Abstract

An analytical method is presented for the thermodynamic analysis of an automotive internal combustion engine with the characteristics of the commercial BMW N54 spark-ignition model. A 3-L displacement volume, six in-line cylinder, four-stroke gasoline engine is considered with two 0.57 bar boost pressure turbochargers and an air-to-air intercooler. Thermodynamic, fluid flow, and heat transfer phenomena are mathematically analyzed to provide results on the chemical composition of the cylinder gases, on their temperature and pressure, on the amount and properties of the residual exhaust gases, on the volumetric and mechanical efficiencies, on the specific fuel consumption, the torque and brake power output, the thermal efficiency, and the energy balance of the engine. The analysis provides results in very close agreement with the actual torque and brake power characteristics reported by the BMW manufacturer.

References

1.
van Basshuysen
,
R.
, and
Schafer
,
F.
,
2015
,
Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven
,
Springer Vieweg
,
Wiesbaden, Germany
.
2.
Taylor
,
C. F.
,
1985
,
The Internal Combustion Engine in Theory and Practice
, Vol.
1
,
The MIT Press
,
Cambridge, MA
.
3.
Stone
,
R.
,
1999
,
Introduction to Internal Combustion Engines
,
Macmillan Press Ltd
.,
London, UK
.
4.
Anonymous
,
2016
, “
European Vehicle Market Statistics: Pocketbook 2016/17
,”
International Council on Clean Transportation Europe
.
5.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw Hill International Editions
.
6.
Ferguson
,
C. R.
, and
Kirkpatrick
,
A. T.
,
2001
,
Internal Combustion Engines: Applied Thermosciences
, 2nd ed.,
John Wiley & Sons Ltd
.,
New York
.
7.
Shyani
,
R. G.
,
Jacobs
,
T. J.
, and
Caton
,
J. A.
,
2011
, “
Quantitative Reasons That Ideal Air-Standard Engine Cycles Are Deficient
,”
Int. J. Mech. Eng. Educ.
,
39
(
3
), pp.
232
248
. 10.7227/IJMEE.39.3.5
8.
Patterson
,
D. J.
, and
van Wylen
,
G.
,
1963
, “
A Digital Computer Simulation for Spark-Iignited Engine Cycles
,”
SAE Paper No. 630076
.
9.
McAulay
,
K. J.
,
Wu
,
T.
,
Chen
,
S. K.
,
Borman
,
G. L.
,
Myers
,
P. S.
, and
Uyehara
,
O. A.
,
1965
, “
Development and Evaluation of the Simulation of the Compression-Ignition Engine
,”
SAE
Paper No. 650451
.
10.
Krieger
,
R. B.
, and
Borman
,
G. L.
,
1966
, “
The Computation of Apparent Heat Release for Internal Combustion Engines
,”
ASME
Paper No. 66WA/DGP-4
.
11.
Bracco
,
F. V.
,
1974
, “
Introducing a New Generation of more Detailed and Informative Combustion Models
,”
SAE
Paper No. 741174
.
12.
Kolchin
,
A.
, and
Demidov
,
V.
,
1984
,
Design of Automotive Engines
,
Mir Publishers
,
Moscow, Russia
.
13.
Ramos
,
J. I.
,
1989
,
Internal Combustion Engine Modeling
,
Hemisphere Press Inc
.,
Boca Raton, FL
.
14.
Caton
,
J. A.
,
2016
,
An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines
,
John Wiley & Sons Ltd
,
Chichester, UK
.
15.
Heywood
,
J. B.
,
Higgins
,
J. M.
,
Watts
,
P. A.
, and
Tabaczynski
,
R. J.
,
1979
, “
Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions
,”
SAE
Paper No.790291
.
16.
Blumberg
,
P. N.
,
Lavoie
,
G. A.
, and
Tabaczynski
,
R. J.
,
1979
, “
Phenomenological Models for Reciprocating Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
5
(
2
), pp.
123
167
. 10.1016/0360-1285(79)90015-7
17.
James
,
E. H.
,
1982
, “
Errors in NO Emission Prediction from Spark Ignition Engines
,”
SAE
Paper No. 790291
.
18.
Raine
,
R. R.
,
Stone
,
C. R.
, and
Gould
,
J.
,
1995
, “
Modeling of Nitric Oxide Formation in Spark Ignition Engines With a Multizone Burned Gas
,”
Combust. Flame
,
102
(
3
), pp.
241
255
. 10.1016/0010-2180(94)00268-W
19.
Mattavi
,
J. N.
, and
Amann
,
C. A.
,
1980
,
Combustion Modeling in Reciprocating Engines
,
Plenum Press
,
New York
.
20.
Primus
,
R. J.
,
2014
, “
The Evolution of Diesel Engine Performance Prediction
,”
Proceedings of the ASME-ICED Fall Technical Conference
,
Columbus, IA
,
Oct. 19–22
, p.
5518
.
21.
Shi
,
Y.
,
Ge
,
H. W.
, and
Reitz
,
R. D.
,
2011
,
Computational Optimization of Internal Combustion Engines
,
Springer-Verlag
,
London, UK
.
22.
Reitz
,
R. D.
, and
Rutland
,
C. J.
,
1995
, “
Development and Testing of Diesel Engine CFD Models
,”
Prog. Energy Combust. Sci.
,
21
(
2
), pp.
173
196
. 10.1016/0360-1285(95)00003-Z
23.
Anonymous
,
2009
, “
N55 engine:Technical Training—Product Information
,”
BMW AG Munchen
.
24.
Douvartzides
,
S.
, and
Karmalis
,
I.
,
2016
, “
Thermal Design of a Natural gas—Diesel Dual Fuel Turbocharged V18 Engine for Ship Propulsion and Power Plant Applications
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
161
, p.
012073
.
25.
McBride
,
J. B.
,
Gordon
,
S.
, and
Reno
,
M. A.
,
1993
,
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
, NASA Technical Memorandum 4513,
NASA
,
USA
.
You do not currently have access to this content.