Abstract

The present paper investigates the feasibility of a tri-generation energy system in an industrial scenario with a modest size in terms of levels of electricity, heat, and cooling consumption. The technology under consideration is the fuel cell technology, both solid oxide fuel cells and proton exchange membrane fuel cells (PEMFCs), compared to other more mature technologies, such as micro gas turbines. The proposed investigation takes into account several scenarios: the existing economy and state-of-the-art technical key performance indicators of the involved energy systems; the state-of-the-art technical key performance indicators of the involved technologies and economic subsidies; and a future scenario that takes into account economies of scale and better performance using the key metrics for fuel cell technology forecasted as 2030 target at European level. The PEMFCs with lithium-ion storage showed total efficiencies in the order of 75% over three reference periods. In terms of emissions, they guarantee a decrease in carbon dioxide equivalent released into the atmosphere equal to 40% of the reference emissions for a separate generation.

References

1.
European Commission
,
2015
, “ENERGY UNION PACKAGE,” Bruxelles.
2.
Bricout
,
A.
,
Slade
,
R.
,
Staffell
,
I.
, and
Halttunen
,
K.
,
2022
, “
From the Geopolitics of Oil and Gas to the Geopolitics of the Energy Transition: Is There a Role for European Supermajors?
,”
Energy Res. Soc. Sci.
,
88
, p.
102634
.
3.
European Commission
, and
Directorate-General for Energy
,
2019
, “Clean Energy for All Europeans,” Publications Office.
4.
de Rosa
,
M.
,
Gainsford
,
K.
,
Pallonetto
,
F.
, and
Finn
,
D. P.
,
2022
, “
Diversification, Concentration and Renewability of the Energy Supply in the European Union
,”
Energy
,
253
, p.
124097
.
5.
Nagel
,
N. O.
,
Kirkerud
,
J. G.
, and
Bolkesjø
,
T. F.
,
2022
, “
The Economic Competitiveness of Flexibility Options: A Model Study of the European Energy Transition
,”
J. Clean. Prod.
,
350
, p.
131534
.
6.
Zakari
,
A.
,
Khan
,
I.
,
Tan
,
D.
,
Alvarado
,
R.
, and
Dagar
,
V.
,
2022
, “
Energy Efficiency and Sustainable Development Goals (SDGs)
,”
Energy
,
239
, p.
122365
.
7.
Dunlap
,
A.
, and
Laratte
,
L.
,
2022
, “
European Green Deal Necropolitics: Exploring ‘Green’ Energy Transition, Degrowth & Infrastructural Colonization
,”
Polit. Geogr.
,
97
, p.
102640
.
8.
Bošnjaković
,
M.
,
Katinić
,
M.
,
Santa
,
R.
, and
Marić
,
D.
,
2022
, “
Wind Turbine Technology Trends
,”
Appl. Sci.
,
12
(
17
), p.
8653
.
9.
Oyarzábal
,
B.
,
Ellis
,
M. W.
, and
von Spakovsky
,
M. R.
,
2004
, “
Development of Thermodynamic, Geometric, and Economic Models for Use in the Optimal Synthesis/Design of a PEM Fuel Cell Cogeneration System for Multi-Unit Residential Applications
,”
ASME J. Energy Resour. Technol.
,
126
(
1
), pp.
21
29
.
10.
Angerer
,
M.
,
Djukow
,
M.
,
Riedl
,
K.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2018
, “
Simulation of Cogeneration-Combined Cycle Plant Flexibilization by Thermochemical Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020909
.
11.
Obara
,
S.
, and
Kudo
,
K.
,
2005
, “
Study of a Small-Scale Fuel Cell Cogeneration System With Methanol Steam Reforming Considering Partial Load and Load Fluctuation
,”
ASME J. Energy Resour. Technol.
,
127
(
4
), pp.
265
271
.
12.
DIRECTIVES DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the Promotion of the Use of Energy From Renewable Sources (Recast) (Text With EEA Relevance).
13.
Klemeš
,
J. J.
,
Van Fan
,
Y.
, and
Jiang
,
P.
,
2021
, “
COVID-19 Pandemic Facilitating Energy Transition Opportunities
,”
Int. J. Energy Res.
,
45
(
3
), pp.
3457
3463
.
14.
Chong
,
C. T.
,
Van Fan
,
Y.
,
Lee
,
C. T.
, and
Klemeš
,
J. J.
,
2022
, “
Post COVID-9 ENERGY Sustainability and Carbon Emissions Neutrality
,”
Energy
,
241
, p.
122801
.
15.
Steffen
,
B.
,
Egli
,
F.
,
Pahle
,
M.
, and
Schmidt
,
T. S.
,
2020
, “
Navigating the Clean Energy Transition in the COVID-19 Crisis
,”
Joule
,
4
(
6
), pp.
1137
1141
.
16.
Mohideen
,
M. M.
,
Ramakrishna
,
S.
,
Prabu
,
S.
, and
Liu
,
Y.
,
2021
, “
Advancing Green Energy Solution With the Impetus of COVID-19 Pandemic
,”
J. Energy Chem.
,
59
, pp.
688
705
.
17.
Almehmadi
,
F. A.
,
Najib
,
A.
,
Ali
,
E.
,
Al-Ansary
,
H.
, and
Orfi
,
J.
,
2022
, “
Sustainable Approach of Generating Water and Energy: Techno-Economic Analysis of a Hybrid Solar Photoactive Thermal System Coupled With Direct Contact Membrane Distillation for Water Purification and Electricity Generation
,”
Appl. Sci.
,
12
(
18
), p.
9137
.
18.
Casisi
,
M.
,
Buoro
,
D.
,
Pinamonti
,
P.
, and
Reini
,
M.
,
2019
, “
A Comparison of Different District Integration for a Distributed Generation System for Heating and Cooling in an Urban Area
,”
Appl. Sci.
,
9
(
17
), p.
3521
.
19.
Shi
,
K.
, and
Asgari
,
A.
,
2022
, “
Energy, Exergy, and Exergoeconomic Analyses and Optimization of a Novel Thermal and Compressed Air Energy Storage Integrated With a Dual-Pressure Organic Rankine Cycle and Ejector Refrigeration Cycle
,”
J. Energy Storage
,
47
, p.
103610
.
20.
Moellenbruck
,
F.
,
Kempken
,
T.
,
Dierks
,
M.
,
Oeljeklaus
,
G.
, and
Goerner
,
K.
,
2018
, “
Cogeneration of Power and Methanol Based on a Conventional Power Plant in Germany
,”
J. Energy Storage
,
19
, pp.
393
401
.
21.
Zhang
,
Y.
,
Hua
,
Q. S.
,
Sun
,
L.
, and
Liu
,
Q.
,
2020
, “
Life Cycle Optimization of Renewable Energy Systems Configuration With Hybrid Battery/Hydrogen Storage: A Comparative Study
,”
J. Energy Storage
,
30
, p.
101470
.
22.
DIRECTIVE 2004/8/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 February 2004 on the Promotion of Cogeneration Based on a Useful Heat Demand in the Internal Energy Market and Amending Directive 92/42/EEC.
23.
Enea
,
2019
, “GSE Guida Alla Cogenerazione Ad Alto Rendimento CAR.” Aggiornamento dell’edizione 1, pp.
1
65
.
24.
Bohorquez
,
W. O. I.
,
Barbosa
,
J. R.
, and
Nogueira
,
L. A. H.
,
2012
, “
Operation Analysis and Thermoeconomic Evaluation of a Cogeneration Power Plant Operating as a Self-Generator in the Ecuadorian Electrical Market and Sugar Industry
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
044501
.
25.
Athar
,
A.
,
Somasundaram
,
S.
, and
Turner
,
W. D.
,
1993
, “
System Optimization of the Cogeneration Facility at Texas A&M University—Present Operation and Load
,”
ASME J. Energy Resour. Technol.
,
115
(
1
), pp.
17
22
.
26.
Gunes
,
M. B.
, and
Ellis
,
M. W.
,
2003
, “
Evaluation of Energy, Environmental, and Economic Characteristics of Fuel Cell Combined Heat and Power Systems for Residential Applications
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
208
220
.
27.
Iliev
,
I. K.
,
Terziev
,
A. K.
,
Beloev
,
H. I.
,
Nikolaev
,
I.
, and
Georgiev
,
A. G.
,
2021
, “
Comparative Analysis of the Energy Efficiency of Different Types Co-Generators at Large Scales CHPs
,”
Energy
,
221
, p.
119755
.
28.
Sarlak
,
G.
,
Olamaei
,
J.
, and
Dosaranian-Moghadam
,
M.
,
2022
, “
Optimal Management of Multi-Carrier Energy Hub Regarding Fuel Cell and, Storage Technologies
,”
J. Energy Storage
,
46
, p.
103821
.
29.
Cigolotti
,
V.
,
Genovese
,
M.
, and
Fragiacomo
,
P.
,
2021
, “
Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems
,”
Energies.
,
14
(
16
), p.
4963
.
30.
Kumar
,
A.
,
Purwar
,
P.
,
Sonkaria
,
S.
, and
Khare
,
V.
,
2022
, “
Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived From Metal-Organic Frameworks
,”
Appl. Sci.
,
12
(
13
), p.
6659
.
31.
Rostami
,
M.
,
Manshadi
,
M. D.
, and
Afshari
,
E.
,
2022
, “
Energy Production and Storage From a Polygeneration System Based on Parabolic Trough Solar Collector, Proton Exchange Membrane Fuel Cell, Organic Rankine Cycle, and Alkaline Electrolyzer
,”
J. Energy Storage
,
47
, p.
103635
.
32.
Yang
,
B.
,
Guo
,
Z.
,
Wang
,
J.
,
Wang
,
J.
,
Zhu
,
T.
,
Shu
,
H.
,
Qiu
,
G.
,
Chen
,
J.
, and
Zhang
,
J.
,
2021
, “
Solid Oxide Fuel Cell Systems Fault Diagnosis: Critical Summarization, Classification, and Perspectives
,”
J. Energy Storage
,
34
, p.
102153
.
33.
Giap
,
V.-T.
,
Kim
,
Y. S.
,
Lee
,
Y. D.
, and
Ahn
,
K. Y.
,
2020
, “
Waste Heat Utilization in Reversible Solid Oxide Fuel Cell Systems for Electrical Energy Storage: Fuel Recirculation Design and Feasibility Analysis
,”
J. Energy Storage
,
29
, p.
101434
.
34.
Afzali
,
P.
,
Anjom Shoa
,
N.
,
Rashidinejad
,
M.
, and
Bakhshai
,
A.
,
2020
, “
Techno-Economic Study Driven Based on Available Efficiency Index for Optimal Operation of a Smart Grid in the Presence of Energy Storage System
,”
J. Energy Storage
,
32
, p.
101853
.
35.
Sadeghi
,
S.
, and
Ameri
,
M.
,
2014
, “
Exergy Analysis of Photovoltaic Panels-Coupled Solid Oxide Fuel Cell and Gas Turbine-Electrolyzer Hybrid System
,”
ASME J. Energy Resour Technol.
,
136
(
3
), p.
031201
.
36.
Dincer
,
I.
,
Rosen
,
M. A.
, and
Zamfirescu
,
C.
,
2009
, “
Exergetic Performance Analysis of a Gas Turbine Cycle Integrated With Solid Oxide Fuel Cells
,”
ASME J. Energy Resour Technol.
,
131
(
3
), p.
032001
.
37.
Ito
,
K.
,
Yokoyama
,
R.
,
Gamou
,
S.
, and
Matsumoto
,
Y.
,
1994
, “
Analysis of Electric Wheeling on Cooperative Fuel Cell Cogeneration Systems Installed in Multi-Areas
,”
ASME J. Energy Resour Technol.
,
116
(
3
), pp.
211
217
.
38.
Kowalski
,
G. J.
, and
Zenouzi
,
M.
,
2006
, “
Selection of Distributed Power-Generating Systems Based on Electric, Heating, and Cooling Loads
,”
ASME J. Energy Resour Technol.
,
128
(
3
), pp.
168
178
.
39.
Boukouvala
,
F.
,
Misener
,
R.
, and
Floudas
,
C. A.
,
2016
, “
Global Optimization Advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO
,”
Eur. J. Oper. Res.
,
252
(
3
), pp.
701
727
.
40.
Tovar-Facio
,
J.
,
Martín
,
M.
, and
Ponce-Ortega
,
J. M.
,
2021
, “
Sustainable Energy Transition: Modeling and Optimization
,”
Curr. Opin. Chem. Eng.
,
31
, p.
100661
.
41.
Rubio-Maya
,
C.
,
Uche
,
J.
, and
Martínez
,
A.
,
2011
, “
Sequential Optimization of a Polygeneration Plant
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2861
2869
.
42.
Chen
,
S.
,
Wassel
,
D.
, and
Büskens
,
C.
,
2016
, “
High-Precision Modeling and Optimization of Cogeneration Plants
,”
Energy Technol.
,
4
(
1
), pp.
177
186
.
43.
Frangopoulos
,
C. A.
,
2018
, “
Recent Developments and Trends in Optimization of Energy Systems
,”
Energy
,
164
, pp.
1011
1020
.
44.
Fragiacomo
,
P.
,
Lucarelli
,
G.
,
Genovese
,
M.
, and
Florio
,
G.
,
2022
, “
Semi-Empirical Development of a Novel and Versatile Multiobjective Optimization Tool for Co/Trigeneration Energy System Design
,”
Int. J. Energy Res.
,
46
(
9
), pp.
12623
12641
.
45.
Fragiacomo
,
P.
,
Lucarelli
,
G.
,
Genovese
,
M.
, and
Florio
,
G.
,
2021
, “
Multi-Objective Optimization Model for Fuel Cell-Based Poly-Generation Energy Systems
,”
Energy
,
237
, p.
121823
.
46.
Heinrich
,
S.
, et al
2022
,
Evaluation of the Energy-efficient Construction and Refurbishment – Fuel Cell Grant (KfW 433) Programme in the 2016–2020 Funding Period
.
47.
Brennstoffzellen
,
A.
,
2018
, “Brennstoffzellen Branchenführer Deutschland 2018 [Fuel Cell Industry Guide Germany 2018]”.
48.
Clean Hydrogen for Europe Institutionalized Partnership (IEP)
,
2020
,
Strategic Research and Innovation Agenda
.
49.
Erbach
,
G.
, and
Jensen
,
L.
,
2021
,
EU Hydrogen Policy
.
50.
ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale
,
2019
, “Fattori Di Emissione Atmosferica Di Gas a Effetto Serra Nel Settore Elettrico Nazionale e Nei Principali Paesi Europei.”
51.
E4tech
,
2019
,
H2 Emission Potential Literature Review - E4tech(UK) Ltd for the Department for Business Energy and Industrial Strategy (BEIS)
.
52.
Fragiacomo
,
P.
, and
Genovese
,
M.
,
2020
, “
Technical-Economic Analysis of a Hydrogen Production Facility for Power-to-Gas and Hydrogen Mobility Under Different Renewable Sources in Southern Italy
,”
Energy Convers. Manage.
,
223
, p.
113332
.
53.
Elgowainy
,
A.
, and
Wang
,
M.
,
2008
, “Fuel Cycle Comparison of Distributed Power Generation Technologies,” 25.
54.
Vidas
,
L.
, and
Castro
,
R.
,
2021
, “
Recent Developments on Hydrogen Production Technologies: State-of-the-Art Review With a Focus on Green-Electrolysis
,”
Appl. Sci.
,
11
(
23
), p.
11363
.
You do not currently have access to this content.