Abstract

Strict emission regulations and energy security concerns have led to various alternative concepts for the engine operation. Diesel–Methanol dual-fuel combustion solution has gained momentum over the past decade due to the fact that the technology required to convert a pure diesel engine to a dual-fuel one is mature, and methanol is a well-known substance in the industry. However, designing, tuning, and optimizing these engines require fast and reliable simulation models. For this purpose in the present study, a phenomenological combustion model, for a four-stroke port-injected methanol diesel engine, is established. The model is tuned with in-cylinder combustion data. The heat release rate is estimated via a triple-Wiebe function. Ignition delay is modeled with an Arrhenius-type expression, utilizing the methanol and diesel equivalence ratio, among other operational parameters. Other model parameters are obtained from data-driven functions, correlating the basic parameters of the combustion. The data used for model calibration and validation were generated with a computational fluid dynamic numerical model, and it was verified with data provided in the literature.

References

1.
Ren
,
Y.
,
Huang
,
Z.
,
Miao
,
H.
,
Di
,
Y.
,
Jiang
,
D.
,
Zeng
,
K.
,
Liu
,
B.
, and
Wang
,
X.
,
2008
, “
Combustion and Emissions of a di Diesel Engine Fuelled With Diesel-Oxygenate Blends
,”
Fuel
,
87
(
12
), pp.
2691
2697
.
2.
Hagen
,
D. L.
,
1977
, “
Methanol as a Fuel: A Review with Bibliography
,”
SAE Trans.
,
86
(
A
), pp.
2764
2796
.
3.
Verhelst
,
S.
,
Turner
,
J. W.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2019
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
(
1
), pp.
43
88
.
4.
Dong
,
Y.
,
Kaario
,
O.
,
Hassan
,
G.
,
Ranta
,
O.
,
Larmi
,
M.
, and
Johansson
,
B.
,
2020
, “
High-Pressure Direct Injection of Methanol and Pilot Diesel: A Non-Premixed Dual-Fuel Engine Concept
,”
Fuel
,
277
(
1
), p.
117932
.
5.
Dierickx
,
J.
,
Verbiest
,
J.
,
Janvier
,
T.
,
Peeters
,
J.
,
Sileghem
,
L.
, and
Verhelst
,
S.
,
2021
, “
Retrofitting a High-Speed Marine Engine to Dual-Fuel Methanol-Diesel Operation: A Comparison of Multiple and Single Point Methanol Port Injection
,”
Fuel Commun.
,
7
(
1
), p.
100010
.
6.
Xu
,
G.-L.
,
Yao
,
C.-D.
, and
Rutland
,
C. J.
,
2014
, “
Simulations of Diesel–Methanol Dual-Fuel Engine Combustion With Large Eddy Simulation and Reynolds-Averaged Navier–Stokes Model
,”
Int. J. Engine Res.
,
15
(
6
), pp.
751
769
.
7.
Vibe
,
I.
,
1956
, “
Semi-Empirical Expression for Combustion Rate in Engines
,”
Proceedings of Conference on Piston Engines, USSR Academy of Sciences
,
Moscow
, pp.
186
191
.
8.
Ghojel
,
J. I.
,
2010
, “
Review of the Development and Applications of the Wiebe Function: A Tribute to the Contribution of Ivan Wiebe to Engine Research
,”
Int. J. Engine Res.
,
11
(
4
), pp.
297
312
.
9.
Miyamoto
,
N.
,
Chikahisa
,
T.
,
Murayama
,
T.
, and
Sawyer
,
R.
,
1985
, “
Description and Analysis of Diesel Engine Rate of Combustion and Performance Using Wiebe’s Functions
,”
SAE Trans.
,
94
(
1
), pp.
622
633
.
10.
Watson
,
N.
,
Pilley
,
A.
, and
Marzouk
,
M.
,
1980
, “
A Combustion Correlation for Diesel Engine Simulation
,”
Automotive Engineering Congress and Exposition
,
Detroit, MI
,
Feb. 25
, SAE Technical Paper 800029.
11.
Xu
,
S.
,
Anderson
,
D.
,
Hoffman
,
M.
,
Prucka
,
R.
, and
Filipi
,
Z.
,
2017
, “
A Phenomenological Combustion Analysis of a Dual-Fuel Natural-Gas Diesel Engine
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
231
(
1
), pp.
66
83
.
12.
Xu
,
H.
,
Yao
,
C.
, and
Xu
,
G.
,
2012
, “
Chemical Kinetic Mechanism and a Skeletal Model for Oxidation of n-Heptane/Methanol Fuel Blends
,”
Fuel
,
93
(
1
), pp.
625
631
.
13.
Zang
,
R.
, and
Yao
,
C.
,
2015
, “
Numerical Study of Combustion and Emission Characteristics of a Diesel/Methanol Dual Fuel (DMDF) Engine
,”
Energy Fuels
,
29
(
6
), pp.
3963
3971
.
14.
Kong
,
S.-C.
,
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation
,”
Proceedings of the International Congress & Exposition
,
Detroit, MI
,
Feb. 27
.
15.
Ricart
,
L. M.
,
Reltz
,
R. D.
, and
Dec
,
J. E.
,
2000
, “
Comparisons of Diesel Spray Liquid Penetration and Vapor Fuel Distributions With In-Cylinder Optical Measurements
,”
ASME J. Eng. Gas Turbines Power
,
122
(
4
), pp.
588
595
.
16.
Ma
,
B.
,
Yao
,
A.
,
Yao
,
C.
,
Chen
,
C.
,
Qu
,
G.
,
Wang
,
W.
, and
Ai
,
Y.
,
2021
, “
Multiple Combustion Modes Existing in the Engine Operating in Diesel Methanol Dual Fuel
,”
Energy
,
234
(
1
), p.
121285
.
17.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
18.
Woschni
,
G.
,
1967
, “
A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine Tech. Rep.
National Fuels and Lubricants, Powerplants, Transportation Meetings
,
Detroit, MI
, SAE Technical Paper 670931.
19.
Ebrahimi
,
R.
,
2011
, “
Effect of Specific Heat Ratio on Heat Release Analysis in a Spark Ignition Engine
,”
Sci. Iran.
,
18
(
6
), pp.
1231
1236
.
20.
Ritter
,
E. R.
, and
Bozzelli
,
J. W.
,
1991
, “
Therm: Thermodynamic Property Estimation for Gas Phase Radicals and Molecules
,”
Int. J. Chem. Kinet.
,
23
(
9
), pp.
767
778
.
21.
Assanis
,
D. N.
,
Filipi
,
Z. S.
,
Fiveland
,
S. B.
, and
Syrimis
,
M.
,
2003
, “
A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
450
457
.
22.
Zou
,
H.
,
Wang
,
L.
,
Liu
,
S.
, and
Li
,
Y.
,
2008
, “
Ignition Delay of Dual Fuel Engine Operating With Methanol Ignited by Pilot Diesel
,”
Front. Energy Power Eng. Chin.
,
2
(
3
), pp.
285
290
.
23.
Zang
,
R.
,
Yao
,
C.
,
Yin
,
Z.
,
Geng
,
P.
,
Hu
,
J.
, and
Wu
,
T.
,
2016
, “
Mechanistic Study of Ignition Characteristics of Diesel/Methanol and Diesel/Methane Dual Fuel Engine
,”
Energy Fuels
,
30
(
10
), pp.
8630
8637
.
24.
Sun
,
Y.
,
Wang
,
H.
,
Yang
,
C.
, and
Wang
,
Y.
,
2017
, “
Development and Validation of a Marine Sequential Turbocharging Diesel Engine Combustion Model Based on Double Wiebe Function and Partial Least Squares Method
,”
Energy Convers. Manage.
,
151
(
1
), pp.
481
495
.
25.
Hellstrom
,
E.
,
Stefanopoulou
,
A.
, and
Jiang
,
L.
,
2014
, “
A Linear Least-Squares Algorithm for Double-Wiebe Functions Applied to Spark-Assisted Compression Ignition
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091504
.
26.
Yeliana
,
Y.
,
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D.
, and
Naber
,
J.
,
2008
, “
Wiebe Function Parameter Determination for Mass Fraction Burn Calculation in an Ethanol-Gasoline Fuelled SI Engine
,”
J. Kones Powertrain Transp.
,
15
(
1
), pp.
567
574
.
You do not currently have access to this content.