Abstract

The wave rotor refrigerator (WRR) is an efficient refrigeration technology. For the purpose of investigating the gas wave characteristics inside the rotor channels of WRR device, the performance and pressure monitoring experiments were conducted at various pressure ratios in this study, and the main findings are as follows: the computation method can produce an accurate design of pressure ports though the post-wave gas pressure of numerical computation has a certain difference with the experiment because of the actual gap leakage and friction loss. The deviation of working pressure ratio from the design values results in the reversed/reflected compression waves or worsens gas leakage, which lowers the equipment performance. When the expansion ratio α is constant, the efficiency reduction ratio does not exceed 11.9% as the relative variation rate of the compression ratio is less than 150%; When the compression ratio β is constant, the efficiency is relatively lowered by a proportion less than 16.4% as the relative increasing ratio of α is less than 63%. This study improves the mechanism of WRR and demonstrates the strong ability of WRR to resist fluctuations in working conditions.

References

1.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
717
735
.
2.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2020
, “
Experimental and Numerical Assessment of an Optimised, Non-Axial Wave Rotor Turbine
,”
Appl. Energy
,
268
, p.
115013
.
3.
Hu
,
D. P.
,
Yu
,
Y.
, and
Liu
,
P. Q.
,
2018
, “
Enhancement of Refrigeration Performance by Energy Transfer of Shock Wave
,”
Appl. Therm. Eng.
,
130
(
1
), pp.
309
318
.
4.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2019
, “
Experimental Results From the Bath μ-Wave Rotor Turbine Performance Tests
,”
Energy Convers. Manage.
,
189
(
6
), pp.
33
48
.
5.
Wolf
,
J.
, and
Perkavec
,
M.
,
1947
, “
Recent Developments in Gas Turbines Design
,”
J. Mech. Eng.
,
69
(
4
), pp.
273
277
.
6.
Welch
,
G. E.
,
Jones
,
S. M.
, and
Paxson
,
D. E.
,
1997
, “
Wave Rotor-Enhanced Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
119
(
2
), pp.
469
477
.
7.
Akbari
,
P.
,
Nalim
,
R.
, and
Müller
,
N.
,
2006
, “
Performance Enhancement of Microturbine Engines Topped With Wave Rotors
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
190
202
.
8.
Kharazi
,
A.
,
Akbari
,
P.
, and
Müeller
,
N.
,
2006
, “
Implementation of 3-Port Condensing Wave Rotors in R718 Cycles
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
325
334
.
9.
Hu
,
D. P.
,
Zhao
,
Y. M.
,
Wu
,
T.
,
Yu
,
Y.
, and
Wang
,
J. X.
,
2019
, “
The Experimental Research and Mechanism Analysis on the Influence of Wave Rotor Rotational Speed on the Wave System and Flow Losses of Gas Wave Ejector
,”
Chem. Eng. Process.: Process Intensif.
,
144
, p.
107638
.
10.
Pearson
,
R. D.
,
1985
, “
A Gas Wave-Turbine Engine Which Developed 35 HP and Performed Over a 6:1 Speed Range
,”
Proceeding ONR/NAVAIR Wave Rotor Research and Technology Workshop
,
Naval Postgraduate School
,
Monterey, CA
,
Jan. 31–Mar. 31
.
11.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2020
, “
Validation of a Numerical Quasi-One-Dimensional Model for Wave Rotor Turbines With Curved Channels
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021017
.
12.
Mayer
,
A.
,
Oda
,
J.
,
Kato
,
K.
,
Haase
,
W.
, and
Fried
,
R.
,
1989
, “
Extruded Ceramic-A New Technology for the Comprex® Rotor
,”
SAE Technical Paper
,
1
, pp.
353
367
.
13.
Lei
,
Y.
,
Zhou
,
D. S.
, and
Zhang
,
H. G.
,
2010
, “
Investigation on Performance of a Compression-Ignition Engine With Pressure-Wave Supercharger
,”
Energy
,
35
(
1
), pp.
85
93
.
14.
Nalim
,
M. R.
,
Li
,
H.
, and
Akbari
,
P.
,
2009
, “
Air-Standard Aerothermodynamic Analysis of Gas Turbine Engines With Wave Rotor Combustion
,”
ASME J. Eng. Gas Turbines Power
,
131
(
5
), p.
054506
.
15.
Snyder
,
P. H.
, and
Nalim
,
M. R.
,
2012
, “
Pressure Gain Combustion Application to Marine and Industrial Gas Turbines
,”
Proceedings of the ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
, Vol.
5
, pp.
409
422
.
16.
Kentfield
,
J. A. C.
,
1969
, “
The Performance of Pressure-Exchanger Dividers and Equalizers
,”
ASME J. Basic Eng.
,
91
(
3
), pp.
361
368
.
17.
Wilson
,
J.
,
1998
, “
An Experimental Determination of Losses in a Three-Port Wave Rotor
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
833
842
.
18.
Hu
,
D. P.
,
Wang
,
J. X.
,
Wu
,
M.
,
Liu
,
T. J.
,
Zhao
,
Y. M.
, and
Yu
,
Y.
,
2020
, “
Unsteady Heat Transfer Between Gas and Tube in a Wave Rotor Refrigerator
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
054502
.
19.
Liu
,
X. Y.
,
Wang
,
H. T.
,
Yu
,
Y.
,
Hu
,
D. P.
, and
Liu
,
P. Q.
,
2022
, “
Investigation on Wave System Matching of Two-Phase Pressure Oscillation Tube
,”
Int. J. Refrig.
,
135
, pp.
75
84
.
20.
Barnes
,
J. A.
,
1967
, “
The Design and Development of the Union Corporation Mine Spot Cooler
,”
Power Jets (Research and Development).
21.
Liu
,
P.
,
Feng
,
M.
,
Liu
,
X.
,
Wang
,
H.
, and
Hu
,
D.
,
2022
, “
Performance Analysis of Wave Rotor Based on Response Surface Optimization Method
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061302
.
22.
Hu
,
D. P.
,
Yu
,
Y.
,
Liu
,
P. Q.
,
Wu
,
X. L.
, and
Zhao
,
Y. M.
,
2019
, “
Improving Refrigeration Performance by Using Pressure Exchange Characteristic of Wave Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022004
.
23.
Zhao
,
J. Q.
, and
Hu
,
D. P.
,
2017
, “
An Improved Wave Rotor Refrigerator Using an Outside Gas Flow for Recycling the Expansion Work
,”
Shock Waves
,
27
(
2
), pp.
325
332
.
24.
Liu
,
P. Q.
,
Li
,
X.
,
Liu
,
X. Y.
,
Feng
,
M. Y.
,
Yu
,
Y.
,
Hu
,
D. P.
, and
Dao
,
M.
,
2021
, “
Investigation on Non-Equilibrium Phase Transition in Wave Rotor
,”
Int. J. Refrig.
,
124
, pp.
96
104
.
25.
Okamoto
,
K.
, and
Nagashima
,
T.
,
2007
, “
Visualization of Wave Rotor Inner Flow Dynamics
,”
J. Propul. Power
,
23
(
2
), pp.
292
300
.
26.
Kurec
,
K.
,
Piechna
,
J.
, and
Gumowski
,
K.
,
2017
, “
Investigations on Unsteady Flow Within a Stationary Passage of a Pressure Wave Exchanger, by Means of PIV Measurements and CFD Calculations
,”
Appl. Therm. Eng.
,
112
, pp.
610
620
.
27.
Li
,
J. Z.
,
Gong
,
E. L.
,
Yuan
,
L.
,
Li
,
W.
, and
Zhang
,
K. C.
,
2018
, “
Experimental Investigation on Flame Formation and Propagation Characteristics in an Ethylene Fuelled Wave Rotor Combustor
,”
Energy Fuels
,
32
(
2
), pp.
2366
2375
.
28.
Liu
,
P. Q.
,
Li
,
X.
,
Liu
,
X. Y.
,
Yang
,
J.
,
Feng
,
M. Y.
, and
Hu
,
D. P.
,
2021
, “
Investigation of the Shock Wave Formation and Intensity in Wave Rotor
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
111301
.
29.
Hu
,
D. P.
,
Li
,
R. F.
,
Liu
,
P. Q.
, and
Zhao
,
J. Q.
,
2016
, “
The Design and Influence of Port Arrangement on an Improved Wave Rotor Refrigerator Performance
,”
Appl. Therm. Eng.
,
107
, pp.
207
217
.
30.
Zhao
,
W. J.
,
Hu
,
D. P.
,
Liu
,
P. Q.
,
Dai
,
Y. Q.
,
Zou
,
J. P.
,
Zhu
,
C.
, and
Zhao
,
J. Q.
,
2012
, “
The Port Width and Position Determination for Pressure-Exchange Ejector
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
064502
.
31.
Zhao
,
Y. M.
,
Li
,
H. R.
, and
Hu
,
D. P.
,
2022
, “
Performance Experiments With a Gas Wave Ejector Equipped With Curved Channels and an Analysis of the Influence of Channel Angles
,”
RSC Adv.
,
12
(
27
), pp.
17294
17311
.
32.
Dai
,
Y. Q.
,
Hu
,
D. P.
, and
Ding
,
M. X.
,
2009
, “
Study on Wave Rotor Refrigerators
,”
Front. Chem. Sci. Eng.
,
3
(
1
), pp.
83
87
.
33.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2021
, “
Numerical Optimisation of a Micro-Wave Rotor Turbine Using a Quasi-Two-Dimensional CFD Model and a Hybrid Algorithm
,”
Shock Waves
,
31
(
1
), pp.
271
300
.
34.
Liu
,
C. Y.
, and
Liu
,
H. X.
,
2017
, “
Unsteady Leakage Flow Mechanism of Wave Rotor
,”
Acta Aeronaut. Et Astronaut. Sinica
,
38
(
5
), p.
14
.
35.
Chan
,
S. N.
,
Liu
,
H. X.
,
Xing
,
F.
, and
Song
,
H.
,
2017
, “
Wave Rotor Design Method With Three Steps Including Experimental Validation
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
111201
.
36.
Rameh
,
S.
, and
Straub
,
D.
,
2023
, “
Film Cooling Performance Prediction for Air and Supercritical CO2
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
031702
.
37.
Egorov
,
Y.
, and
Menter
,
F.
,
2008
, “
Development and Application of SST-SAS Turbulence Model in the DESIDER Project
,”
Adv. Hybrid RANS-LES Modeling
,
97
, pp.
261
270
.
38.
Bai
,
J. Q.
,
Wang
,
C.
, and
Zhang
,
Y.
,
2014
, “
Application of a Turbulence Model Based on Von Karman Scale to Simulate Steady and Unsteady Flow Problems
,”
Eng. Mech.
,
31
(
11
), pp.
39
45
.
39.
Zhao
,
Y. M.
,
Li
,
H. R.
,
Hu
,
D. P.
,
Liu
,
M. H.
, and
Feng
,
Q.
,
2022
, “
Study on the Performance of Collaborative Production Mode for Gas Wave Ejector
,”
Sustainability
,
14
(
12
), p.
7261
.
40.
Uemura
,
Y.
,
Tanabe
,
Y.
,
Mamori
,
H.
,
Fukushima
,
N.
, and
Yamamoto
,
M.
,
2017
, “
Wake Deflection in Long Distance From a Yawed Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051212
.
You do not currently have access to this content.