Abstract

The molecular adsorption in nano-scale shale pores results in the reduction of effective pore volume and further strengthens the confinement effect. This study aims at examining the adsorption effect coupled with confinement effects on phase behaviors of shale fluids. First, a modified extended Langmuir formula was developed to calculate the adsorption amount for a multi-component shale mixture. A modified cubic Peng–Robinson equation of state was proposed, and the occupied volume by the adsorbed phase was taken into account. The saturation pressures and fluid properties under the confinement effects and adsorption isotherms were examined. In order to examine the change of phase properties during a gas injection process in a shale condensate reservoir, we gradually increase the mole fractions of N2 or CO2 in shale condensate mixtures by coupling with confinement effects. We found that the thickness of the adsorption film reduces the effective pore throat, leading to intensified confinement effects and smaller bubble point pressures. When the gas adsorption layer is considered, a more significant decrease in density and viscosity is observed. The critical pressure of the condensate fluids increases and the critical temperature decreases with the continuous N2 injection. Contrary to N2 injection, the critical pressure decreases and the critical temperature moves upwards with CO2 injection. For condensate that accumulates in nano-pores (e.g., r ≤ 6 nm), the condensate fluid always exists in gas status during the gas injection and the subsequent production processes.

References

1.
Morishige
,
K.
,
Fujii
,
H.
,
Uga
,
M.
, and
Kinukawa
,
D.
,
1997
, “
Capillary Critical Point of Argon, Nitrogen, Oxygen, Ethylene, and Carbon Dioxide in MCM-41
,”
Langmuir
,
13
(
13
), pp.
3494
3498
.
2.
Morishige
,
K.
, and
Shikimi
,
M.
,
1998
, “
Adsorption Hysteresis and Pore Critical Temperature in a Single Cylindrical Pore
,”
J. Chem. Phys.
,
108
(
18
), pp.
7821
7824
.
3.
Zarragoicoechea
,
G. J.
, and
Kuz
,
V. A.
,
2002
, “
van der Waals Equation of State for a Fluid in a Nanopore
,”
Phys. Rev. E
,
65
(
2
), p.
021110
.
4.
Zhang
,
K.
,
Jia
,
N.
,
Zeng
,
F.
,
Li
,
S.
, and
Liu
,
L.
,
2019
, “
A Review of Experimental Methods for Determining the Oil–Gas Minimum Miscibility Pressures
,”
J. Pet. Sci. Eng.
,
183
(
1
), pp.
1
25
.
5.
Devegowda
,
D.
,
Sapmanee
,
K.
,
Civan
,
F.
, and
Sigal
,
R.
,
2012
, “
Phase Behavior of Gas Condensates in Shale Due to Pore Proximity Effects: Implications for Transport, Reserves and Well Productivity
,”
Paper Presented at the SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 8–10
, Paper No. SPE-160099-MS.
6.
Teklu
,
T. W.
,
Alharthy
,
N.
,
Kazemi
,
H.
,
Yin
,
X.
,
Graves
,
R. M.
, and
AlSumaiti
,
A. M.
,
2014
, “
Phase Behavior and Minimum Miscibility Pressure in Nanopores
,”
SPEREE
,
17
(
3
), pp.
396
403
.
7.
Dong
,
X.
,
Liu
,
H.
,
Hou
,
J.
,
Wu
,
K.
, and
Chen
,
Z.
,
2016
, “
Phase Equilibria of Confined Fluids in Nanopores of Tight and Shale Rocks Considering the Effect of Capillary Pressure and Adsorption Film
,”
Ind. Eng. Chem. Res.
,
55
(
3
), pp.
798
811
.
8.
Du
,
F.
, and
Nojabaei
,
B.
,
2020
, “
Estimating Diffusion Coefficients of Shale Oil, Gas, and Condensate With Nano-Confinement Effect
,”
J. Pet. Sci. Eng.
,
193
(
1
), p.
107362
.
9.
Wang
,
L.
,
Parsa
,
E.
,
Gao
,
Y.
,
Ok
,
J. T.
,
Neeves
,
K.
,
Yin
,
X.
, and
Ozkan
,
E.
,
2014
, “
Experimental Study and Modeling of the Effect of Nanoconfinement on Hydrocarbon Phase Behavior in Unconventional Reservoirs
,”
SPE Western North American and Rocky Mountain Joint Meeting
,
Denver, CO
.
10.
Parsa
,
E.
,
Yin
,
X.
, and
Ozkan
,
E.
,
2015
, “
Direct Observation of the Impact of Nanopore Confinement on Petroleum Gas Condensation
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
.
11.
Alfi
,
M.
,
Nasrabadi
,
H.
, and
Banerjee
,
D.
,
2016
, “
Experimental Investigation of Confinement Effect on Phase Behavior of Hexane, Heptane and Octane Using Lab-on-a-Chip Technology
,”
Fluid Phase Equilibria
,
423
(
1
), pp.
25
33
.
12.
Luo
,
S.
,
Nasrabadi
,
H.
, and
Lutkenhaus
,
J. L.
,
2016
, “
Effect of Confinement on the Bubble Points of Hydrocarbons in Nanoporous Media
,”
AIChE J.
,
62
(
5
), pp.
1772
1780
.
13.
Tan
,
S. P.
,
Qiu
,
X.
,
Dejam
,
M.
, and
Adidharma
,
H.
,
2019
, “
Critical Point of Fluid Confined in Nanopores: Experimental Detection and Measurement
,”
J. Phys. Chem. C
,
123
(
15
), pp.
9824
9830
.
14.
Du
,
L.
, and
Chu
,
L.
,
2012
, “
Understanding Anomalous Phase Behavior in Unconventional Oil Reservoirs
,”
Presented in SPE Canadian Unconventional Resources Conference
,
Calgary, Alberta
.
15.
Nojabaei
,
B.
,
Johns
,
R. T.
, and
Chu
,
L.
,
2013
, “
Effect of Capillary Pressure on Phase Behavior in Tight Rocks and Shales
,”
SPEREE
,
16
(
3
), pp.
281
289
.
16.
Nojabaei
,
B.
, and
Johns
,
R. T.
,
2016
, “
Extrapolation of Black- and Volatile-Oil Fluid Properties With Application to Immiscible/Miscible Gas Injection
,”
J. Nat. Gas Sci. Eng.
,
33
(
1
), pp.
367
377
.
17.
Huang
,
J.
,
Yin
,
X.
,
Barrufet
,
M. A.
, and
Killough
,
J.
,
2021
, “
Lattice Boltzmann Simulation of Phase Equilibrium of Methane in Nanopores Under Effects of Adsorption
,”
Chem. Eng. J.
,
419
(
5
), p.
129625
.
18.
Pang
,
J.
,
Zuo
,
J. Y.
,
Zhang
,
D.
, and
Du
,
L.
,
2012
, “
Impact of Porous Media on Saturation Pressures of Gas and Oil in Tight Reservoirs
,”
Paper Presented at the SPE Canadian Unconventional Resources Conference
,
Calgary, Alberta
,
October
, Paper No. SPE-161143-MS.
19.
Etminan
,
S. R.
,
Javadpour
,
F.
,
Maini
,
B. B.
, and
Chen
,
Z.
,
2014
, “
Measurement of Gas Storage Processes in Shale and of the Molecular Diffusion Coefficient in Kerogen
,”
Int. J. Coal Geol.
,
123
(
1
), pp.
1
9
.
20.
Liu
,
S.
,
Agarwal
,
R.
, and
Sun
,
B.
,
2022
, “
Numerical Simulation and Optimization of CO2-Enhanced Gas Recovery in Homogeneous and Vertical Heterogeneous Reservoir Models
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033009
.
21.
Andrade
,
D. d.
, and
Nojabaei
,
B.
,
2021
, “
Phase Behavior and Composition Distribution of Multiphase Hydrocarbon Binary Mixtures in Heterogeneous Nanopores: A Molecular Dynamics Simulation Study
,”
Nanomaterials
,
11
(
9
), p.
2431
.
22.
Alafnan
,
S.
,
Awotunde
,
A.
,
Glatz
,
G.
,
Adjei
,
S.
,
Alrumaih
,
I.
, and
Gowida
,
A.
,
2021
, “
Langmuir Adsorption Isotherm in Unconventional Resources: Applicability and Limitations
,”
J. Pet. Sci. Eng.
,
207
(
1
), p.
109172
.
23.
Alafnan
,
S.
,
2022
, “
Carbon Dioxide and Methane Sequestration in Organic-Rich Shales: Nanoscale Insights Into Adsorption and Transport Mechanisms
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073010
.
24.
Bousige
,
C.
,
Ghimbeu
,
C. M.
,
Vix-Guterl
,
C.
,
Pomerantz
,
A. E.
,
Suleimenova
,
A.
,
Vaughan
,
G.
,
Garbarino
,
G.
, et al
,
2016
, “
Realistic Molecular Model of Kerogen’s Nanostructure
,”
Nat. Mater.
,
15
(
5
), pp.
576
582
.
25.
Ungerer
,
P.
,
Collell
,
J.
, and
Yiannourakou
,
M.
,
2014
, “
Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity
,”
Energy Fuels
,
29
(
1
), pp.
91
105
.
26.
Do
,
D. D.
, and
Do
,
H. D.
,
2002
, “
Effects of Adsorbate-Adsorbate Interaction in the Description of Adsorption Isotherm of Hydrocarbons in Micro-Mesoporous Carbonaceous Materials
,”
Appl. Surf. Sci.
,
196
(
1–4
), pp.
13
29
.
27.
Song
,
Z.
,
Song
,
Y.
,
Guo
,
J.
,
Zhang
,
Z.
, and
Hou
,
J.
,
2020
, “
Adsorption Induced Critical Shifts of Confined Fluids in Shale Nanopores
,”
Chem. Eng. J.
,
385
(
1
), p.
123837
.
28.
Du
,
X.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X.
,
2018
, “
The Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2–CH4 Displacement in Shale
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012907
.
29.
Hoffman
,
B. T.
, and
Shoaib
,
S.
,
2014
, “
CO2 Flooding to Increase Recovery for Unconventional Liquids-Rich Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022801
.
30.
Liu
,
X.
, and
Zhang
,
D.
,
2019
, “
A Review of Phase Behavior Simulation of Hydrocarbons in Confined Space: Implications for Shale Oil and Shale Gas
,”
J. Nat. Gas Sci. Eng.
,
68
(
1
), p.
102901
.
31.
Augustine
,
C.
,
Johnston
,
H.
,
Young
,
D. L.
,
Amini
,
K.
,
Uzun
,
I.
, and
Kazemi
,
H.
,
2021
, “
Evaluation of Energy Storage Potential of Unconventional Shale Reservoirs Using Numerical Simulation of Cyclic Gas Injection
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112004
.
32.
Cui
,
J.
,
2022
, “
Effect of Viscosity Transition on Oil Flow in Shale and Tight Rocks
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023005
.
33.
Cui
,
J.
,
2022
, “
Oil-Water Relative Permeability in Shale Considering the Effect of Kerogen: Modeling and Analysis
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023006
.
34.
Alafnan
,
S.
,
2022
, “
Adsorption–Desorption Hysteresis in Shale Formation: New Insights Into the Underlying Mechanisms
,”
Energy Fuels
,
36
(
10
), pp.
5307
5315
.
35.
Jordi
,
R. G.
, and
Do
,
D. D.
,
1992
, “
Frequency-Response Analysis of Sorption in Zeolite Crystals With Finite Intracrystal Reversible Mass Exchange
,”
J. Chem. Soc. Faraday Trans.
,
88
(
16
), pp.
2411
2419
.
36.
Micke
,
A.
,
Bulow
,
M.
,
Kocirik
,
M.
, and
Struve
,
P.
,
1994
, “
Sorbate Immobilization in Molecular Sieves. Rate-Limiting Step for n-Hexane Uptake by Silicalite-I
,”
J. Phys. Chem.
,
98
(
47
), pp.
12337
12344
.
37.
Song
,
L.
, and
Rees
,
L. V. C.
,
1997
, “
Adsorption and Transport of n-Hexane in Silicalite-1 by the Frequency Response Technique
,”
J. Chem. Soc. Faraday Trans.
,
93
(
4
), pp.
649
657
.
38.
Macleod
,
D. B.
,
1923
, “
On a Relation Between Surface Tension and Density
,”
Trans. Faraday Soc.
,
19
(
1
), pp.
38
42
.
39.
Sugden
,
S.
,
1924
, “
The Variation of Surface Tension With Temperature and Some Related Functions
,”
J. Chem. Soc.
,
125
(
1
), pp.
32
41
.
40.
Yun
,
J.-H.
,
Duren
,
T.
,
Keil
,
F. J.
, and
Seaton
,
N. A.
,
2002
, “
Adsorption of Methane, Ethane, and Their Binary Mixtures on MCM-41 Experimental Evaluation of Methods for the Prediction of Adsorption Equilibrium
,”
Langmuir.
,
18
(
7
), pp.
2693
2701
.
41.
Song
,
L.
,
Sun
,
Z.
,
Duan
,
L.
,
Gui
,
J.
, and
McDougall
,
G. S.
,
2007
, “
Adsorption and Diffusion Properties of Hydrocarbons in Zeolites
,”
Microporous Mesoporous Mater.
,
104
(
1–3
), pp.
115
128
.
42.
Feast
,
G.
,
Wu
,
K.
,
Walton
,
J.
,
Cheng
,
Z.
, and
Chen
,
B.
,
2015
, “
Modeling and Simulation of Natural Gas Production From Unconventional Shale Reservoirs
,”
Int. J. Clean Coal Energy
,
4
(
2
), pp.
23
32
.
You do not currently have access to this content.