Abstract

The undesired heat evolved in photovoltaic (PV) module during its regular operation must be removed to aspire to reliable power output. PV installations in tropical and sub-tropical regions experience abrupt PV module heating, especially during summer seasons that lead to a hot spot effect. Photovoltaic–thermal (PVT) system has proven to provide module cooling satisfactorily with various working fluids while delivering a higher annual energy yield. In the present study, experiments were carried out on novel web flow channel PVT module at Vellore (12.9165 ° N, 79.1325 ° E), India. The present research was carried out under outdoor conditions with various mass flowrates ranging 0.5– 2 L per minute under sunny and overcast conditions. Water was used as working fluid in the PVT system, and performance results were compared to 335 Wp reference polycrystalline PV module under similar operating conditions. PVT with bi-symmetrical web flow thermal absorber gave maximum overall efficiency of 63.09% obtained at 1.5 LPM mass flowrate of the water. Estimation of CO2 mitigations for PVT system earned 8.2% higher savings than the PV module alone under overcast conditions.

References

1.
Valavanidis
,
A.
, “
Scientific Reviews The COP26 UN Conference Promoted Climate to the Top of the Global Agenda
,” http://chem-tox-ecotox.org/scientificreviews/
2.
Wong
,
K. V.
,
2016
, “
Sustainable Engineering in the Global Energy Sector
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
024701
.
3.
Wadia
,
C.
,
Alivisatos
,
A. P.
, and
Kammen
,
D. M.
,
2009
, “
Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment
,”
Environ. Sci. Technol.
,
43
(
6
), pp.
2072
2077
.
4.
Chowdhury
,
M. D.
, and
Mokheimer
,
E. M. A.
,
2021
, “
Energy and Exergy Performance Comparative Analysis of a Solar-Driven Organic Rankine Cycle Using Different Organic Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102107
.
5.
Tirupati Rao
,
V.
, and
Raja Sekhar
,
Y.
,
2022
, “
Comparative Analysis on Embodied Energy and CO2 Emissions for Stand-Alone Crystalline Silicon Photovoltaic Thermal (PVT) Systems for Tropical Climatic Regions of India
,”
Sustain. Cities Soc.
,
78
, p.
103650
.
6.
Ogbomo
,
O. O.
,
Amalu
,
E. H.
,
Ekere
,
N. N.
, and
Olagbegi
,
P. O.
,
2017
, “
A Review of Photovoltaic Module Technologies for Increased Performance in Tropical Climate
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
1225
1238
.
7.
Rajput
,
P.
,
Malvoni
,
M.
,
Manoj Kumar
,
N.
,
Sastry
,
O. S.
, and
Jayakumar
,
A.
,
2020
, “
Operational Performance and Degradation Influenced Life Cycle Environmental–Economic Metrics of mc-Si, a-Si and HIT Photovoltaic Arrays in Hot Semi-Arid Climates
,”
Sustainability
,
12
(
3
), p.
1075
.
8.
Li
,
G.
,
Xuan
,
Q.
,
Pei
,
G.
,
Su
,
Y.
, and
Ji
,
J.
,
2018
, “
Effect of Non-Uniform Illumination and Temperature Distribution on Concentrating Solar Cell—A Review
,”
Energy
,
144
, pp.
1119
1136
.
9.
Garcìa
,
M. C. A.
,
Herrmann
,
W.
,
Böhmer
,
W.
, and
Proisy
,
B.
,
2003
, “
Thermal and Electrical Effects Caused by Outdoor Hot-Spot Testing in Associations of Photovoltaic Cells
,”
Prog. Photovoltaics Res. Appl.
,
11
(
5
), pp.
293
307
.
10.
Sadok
,
M.
, and
Mehdaoui
,
A.
,
2008
, “
Outdoor Testing of Photovoltaic Arrays in the Saharan Region
,”
Renewable Energy
,
33
(
12
), pp.
2516
2524
.
11.
Sayyah
,
A.
,
Horenstein
,
M. N.
, and
Mazumder
,
M. K.
,
2014
, “
Energy Yield Loss Caused by Dust Deposition on Photovoltaic Panels
,”
Sol. Energy
,
107
, pp.
576
604
.
12.
Zhang
,
G.
,
Wei
,
J.
,
Wang
,
Z.
,
Xie
,
H.
,
Xi
,
Y.
, and
Khalid
,
M.
,
2019
, “
Investigation Into Effects of Non-Uniform Irradiance and Photovoltaic Temperature on Performances of Photovoltaic/Thermal Systems Coupled With Truncated Compound Parabolic Concentrators
,”
Appl. Energy
,
250
, pp.
245
256
.
13.
Diqing
,
Z.
,
Wu
,
C.
, and
Li
,
Z.
,
2012
, “
Modeling and Simulation of Partial Shaded PV Modules
,”
Proceedings of the International Computer Science Conference
,
Springer
,
Berlin/Heidelberg
, pp.
124
134
.
14.
Moretón
,
R.
,
Lorenzo
,
E.
, and
Narvarte
,
L.
,
2015
, “
Experimental Observations on Hot-Spots and Derived Acceptance/Rejection Criteria
,”
Sol. Energy
,
118
, pp.
28
40
.
15.
Solórzano
,
J.
, and
Egido
,
M. A.
,
2014
, “
Hot-Spot Mitigation in PV Arrays With Distributed MPPT (DMPPT)
,”
Sol. Energy
,
101
, pp.
131
137
.
16.
Abderrezek
,
M.
, and
Fathi
,
M.
,
2017
, “
Experimental Study of the Dust Effect on Photovoltaic Panels’ Energy Yield
,”
Sol. Energy
,
142
, pp.
308
320
.
17.
Makki
,
A.
,
Omer
,
S.
, and
Sabir
,
H.
,
2015
, “
Advancements in Hybrid Photovoltaic Systems for Enhanced Solar Cells Performance
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
658
684
.
18.
Sainthiya
,
H.
, and
Beniwal
,
N. S.
,
2019
, “
Efficiency Enhancement of Photovoltaic/Thermal Module Using Front Surface Cooling Technique in Winter and Summer Seasons: An Experimental Investigation
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
091201
.
19.
Tirupati Rao
,
V.
, and
Raja Sekhar
,
Y.
,
2021
, “
Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management–A Review
,”
Energy Environ.
, pp.
1
46
.
20.
García
,
J. M.
,
Vasquez Padilla
,
R.
, and
Sanjuan
,
M. E.
,
2017
, “
Response Surface Optimization of an Ammonia–Water Combined Power/Cooling Cycle Based on Exergetic Analysis
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022001
.
21.
Al-Hadban
,
Y.
,
Sreekanth
,
K. J.
,
Al-Taqi
,
H.
, and
Alasseri
,
R.
,
2018
, “
Implementation of Energy Efficiency Strategies in Cooling Towers—A Techno-Economic Analysis
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012001
.
22.
Chow
,
T. T.
,
2010
, “
A Review on Photovoltaic/Thermal Hybrid Solar Technology
,”
Appl. Energy
,
87
(
2
), pp.
365
379
.
23.
Saidur
,
R.
,
BoroumandJazi
,
G.
,
Mekhlif
,
S.
, and
Jameel
,
M.
,
2012
, “
Exergy Analysis of Solar Energy Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
350
356
.
24.
Sansaniwal
,
S. K.
,
Sharma
,
V.
, and
Mathur
,
J.
,
2018
, “
Energy and Exergy Analyses of Various Typical Solar Energy Applications: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1576
1601
.
25.
Aberoumand
,
S.
,
Ghamari
,
S.
, and
Shabani
,
B.
,
2018
, “
Energy and Exergy Analysis of a Photovoltaic Thermal (PV/T) System Using Nanofluids: An Experimental Study
,”
Sol. Energy
,
165
, pp.
167
177
.
26.
Rajoria
,
C. S.
,
Agrawal
,
S.
, and
Tiwari
,
G. N.
,
2012
, “
Overall Thermal Energy and Exergy Analysis of Hybrid Photovoltaic Thermal Array
,”
Sol. Energy
,
86
(
5
), pp.
1531
1538
.
27.
Yazdanpanahi
,
J.
,
Sarhaddi
,
F.
, and
Mahdavi Adeli
,
M.
,
2015
, “
Experimental Investigation of Exergy Efficiency of a Solar Photovoltaic Thermal (PVT) Water Collector Based on Exergy Losses
,”
Sol. Energy
,
118
, pp.
197
208
.
28.
Hazami
,
M.
,
Mehdaoui
,
F.
,
Naili
,
N.
,
Noro
,
M.
,
Lazzarin
,
R.
, and
Guizani
,
A.
,
2017
, “
Energetic, Exergetic and Economic Analysis of an Innovative Solar CombiSystem (SCS) Producing Thermal and Electric Energies: Application in Residential and Tertiary Households
,”
Energy Convers. Manage.
,
140
, pp.
36
50
.
29.
Jahromi
,
S. N.
,
Vadiee
,
A.
, and
Yaghoubi
,
M.
,
2015
, “
Exergy and Economic Evaluation of a Commercially Available PV/T Collector for Different Climates in Iran
,”
Energy Procedia
,
75
, pp.
444
456
.
30.
“Cloud Cover Index for Indian Locations,” https://neo.gsfc.nasa.gov/IMD/NASA
31.
Rosli
,
M. A. M.
,
Ping
,
Y. J.
,
Misha
,
S.
,
Akop
,
M. Z.
,
Sopian
,
K.
,
Mat
,
S.
,
Al-Shamani
,
A. N.
, and
Saruni
,
M. A.
,
2018
, “
Simulation Study of Computational Fluid Dynamics on Photovoltaic Thermal Water Collector With Different Designs of Absorber Tube
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
52
(
1
), pp.
12
22
.
32.
Hossain
,
M. S.
,
Pandey
,
A. K.
,
Selvaraj
,
J.
,
Abd Rahim
,
N.
,
Islam
,
M. M.
, and
Tyagi
,
V. V.
,
2019
, “
Two Side Serpentine Flow Based Photovoltaic-Thermal-Phase Change Materials (PVT-PCM) System: Energy, Exergy and Economic Analysis
,”
Renewable Energy
,
136
, pp.
1320
1336
.
33.
Poredoš
,
P.
,
Tomc
,
U.
,
Petelin
,
N.
,
Vidrih
,
B.
,
Flisar
,
U.
, and
Kitanovski
,
A.
,
2020
, “
Numerical and Experimental Investigation of the Energy and Exergy Performance of Solar Thermal, Photovoltaic and Photovoltaic-Thermal Modules Based on Roll-Bond Heat Exchangers
,”
Energy Convers. Manage.
,
210
, p.
112674
.
34.
Maatallah
,
T.
,
Zachariah
,
R.
, and
Al-Amri
,
F. G.
,
2019
, “
Exergo-Economic Analysis of a Serpentine Flow Type Water Based Photovoltaic Thermal System With Phase Change Material (PVT-PCM/Water)
,”
Sol. Energy
,
193
, pp.
195
204
.
35.
Preet
,
S.
,
2018
, “
Water and Phase Change Material Based Photovoltaic Thermal Management Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
791
807
.
36.
Farzanehnia
,
A.
, and
Sardarabadi
,
M.
,
2019
, “Exergy in Photovoltaic/Thermal Nanofluid-Based Collector Systems,”
Exergy and Its Application-Toward Green Energy Production and Sustainable Environment
,
IntechOpen
.
37.
Tiwari
,
G. N.
,
Mishra
,
A. K.
,
Meraj
,
M.
,
Ahmad
,
A.
, and
Khan
,
M. E.
,
2020
, “
Effect of Shape of Condensing Cover on Energy and Exergy Analysis of a PVT-CPC Active Solar Distillation System
,”
Sol. Energy
,
205
, pp.
113
125
.
38.
Rohot
,
2021
, “
Optimization of PV/T Systems by Using Serpentine Flow-Based System
,”
VIT University thesis
,
Vellore Institute of Technology
.
39.
Mishra
,
R. K.
, and
Tiwari
,
G. N.
,
2013
, “
Energy and Exergy Analysis of Hybrid Photovoltaic Thermal Water Collector for Constant Collection Temperature Mode
,”
Sol. Energy
,
90
, pp.
58
67
.
40.
Tiwari
,
S.
,
2018
, “
Thermal Modeling of Photovoltaic Thermal (PVT) Dryer: A Heat and Mass Transfer Analysis
,” Doctoral dissertation, Indian Institute of Technology Delhi (IITD), New Delhi.
41.
Tiwari
,
S.
, and
Tiwari
,
G. N.
,
2016
, “
Exergoeconomic Analysis of Photovoltaic-Thermal (PVT) Mixed Mode Greenhouse Solar Dryer
,”
Energy
,
114
, pp.
155
164
.
42.
Chow
,
T. T.
, and
Ji
,
J.
,
2012
, “
Environmental Life-Cycle Analysis of Hybrid Solar Photovoltaic/Thermal Systems for Use in Hong Kong
,”
Int. J. Photoenergy
,
2012
, p.
101868
.
43.
Prabhakant
, and
Tiwari
,
G. N.
,
2009
, “
Evaluation of Carbon Credits Earned by Energy Security in India
,”
International Journal of Low-Carbon Technologies
,
4
(
1
), pp.
42
51
.
44.
Wong
,
J. H.
,
Royapoor
,
M.
, and
Chan
,
C. W.
,
2016
, “
Review of Life Cycle Analyses and Embodied Energy Requirements of Single-Crystalline and Multi-Crystalline Silicon Photovoltaic Systems
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
608
618
.
45.
Abdullah
,
A. L.
,
Misha
,
S.
,
Tamaldin
,
N.
,
Rosli
,
M. A. M.
, and
Sachit
,
F. A.
,
2020
, “
Theoretical Study and Indoor Experimental Validation of Performance of the New Photovoltaic Thermal Solar Collector (PVT) Based Water System
,”
Case Stud. Therm. Eng.
,
18
, p.
100595
.
46.
Shahsavar
,
A.
,
Jha
,
P.
,
Arıcı
,
M.
,
Nižetić
,
S.
, and
Ma
,
Z.
,
2021
, “
Energetic and Exergetic Performances of a Nanofluid-Based Photovoltaic/Thermal System Equipped With a Sheet-and-Grooved Serpentine Tube Collector: Indoor Experimental Tests
,”
Sol. Energy
,
225
, pp.
918
933
.
47.
Shyam
, and
Tiwari
,
G. N.
,
2016
, “
Analysis of Series Connected Photovoltaic Thermal Air Collectors Partially Covered by Semitransparent Photovoltaic Module
,”
Sol. Energy
,
137
, pp.
452
462
.
You do not currently have access to this content.