Abstract

Multiple jet impingement cooling plays a significant role in the leading-edge cooling of the gas turbine blade. The heat transfer enhancement with this method depends on stand-off distance, nozzle array arrangement, surface roughness, a dimpled surface, a curved surface, etc. This study has developed a numerical simulation model to investigate heat transfer and flow behavior on a dimpled surface. The comparison was made with the conventionally designed dimple and a newly designed-leaf dimple. Computational fluid dynamics plays a significant role in representing the precise flow and heat transfer behavior. This study analyzed the results based on Nusselt number, Reynolds numbers, pressure drop, friction factor, surface roughness of the target plate, and thermal performance. The hemispherical dimpled target plate shows 5–10% more efficiency than the smooth target plate. The leaf target plate shows 2–6% more efficiency compared to the hemispherical dimpled target plate

References

1.
Amano
,
R. S.
,
Nourin
,
F. N.
,
Salem
,
A. R. S.
, and
DiPasquale
,
N.
,
2019
, “
Investigation of Experimental Jet Array for Impinging Cooling of Blades
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
, p.
4240
.
2.
Nourin
,
F. N.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Jet Impingement Cooling for Gas Turbine Blade With In-Line and Staggered Nozzle Array
,”
Int. J. Energy Clean Environ.
,
21
(
2
).
3.
Salem
,
A. R.
,
Nourin
,
F. N.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
.
4.
Nourin
,
F.
, and
Amano
,
R. S.
,
2020
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080801
.
5.
Khalil
,
A.
,
Kayed
,
H.
,
Hanafi
,
A.
,
Nemitallah
,
M.
, and
Habib
,
M.
,
2019
, “
Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042206
.
6.
Galeana
,
D.
, and
Beyene
,
A.
,
2020
, “
A Swirl Cooling Flow Experimental Investigation on a Circular Chamber Using Three-Dimensional Stereo-Particle Imaging Velocimetry
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042002
.
7.
Amano
,
R. S.
,
1986
, “
A Numerical Study of Turbulent Axisymmetric Jets Flowing Into Closed Tubes
,”
ASME J. Energy Resour. Technol.
,
108
(
4
), pp.
286
291
.
8.
Amano
,
R. S.
, and
Sunden
,
B.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
UK
, p.
252
, http://www.witpress.com/books/978-1-84564-906-7
9.
Sun
,
D.
, and
Amano
,
R. S.
,
2006
,
Advances in Heat Transfer
,
WIT Press
,
UK
, pp.
65
76
.
10.
Amano
,
R. S.
,
Neusen
,
K. F.
, and
Gores
,
T.
,
1992
, “Transport Phenomena in Food Processing,” First International Conference Proceedings 1st ed.,
CRC Press
,
Boca Raton, FL
, p.
434
.
11.
Elgammal
,
T.
, and
Amano
,
R. S.
,
2018
, “
Effectiveness of Central Swirlers in the Thermal Uniformity of Jet-in-Crossflow Mixing
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
101202
.
12.
Gupta
,
A.
,
Ibrahim
,
M. S.
, and
Amano
,
R. S.
,
2016
, “
Effect of jet-to-Mainstream Momentum Flux Ratio on Mixing Process
,”
Heat Mass Transfer
,
52
(
3
), pp.
621
634
.
13.
Kumagai
,
M.
, and
Jensen
,
M. K.
,
2002
, “
Heat Transfer Enhancement by Turbulent Impinging Jets Using a Universal Function Method
,”
J. Enhanced Heat Transfer
,
9
(
1
), pp.
47
55
.
14.
Morris
,
G. K.
,
Garimella
,
S. V.
, and
Amano
,
R. S.
,
1996
, “
Prediction of Jet Impingement Heat Transfer Using a Hybrid Wall Treatment With Different Turbulent Prandtl Number Functions
,”
ASME J. Heat Transfer.
,
118
(
3
), pp.
562
569
.
15.
Choi
,
J. C.
, and
Amano
,
R. S.
,
1992
, “
Application of a Higher-Order Turbulence Closure Model to Plane Jet
,”
Numer. Heat Transfer, Part A
,
21
(
1
), pp.
21
35
.
16.
Amano
,
R. S.
, and
Brandt
,
H.
,
1984
, “
Numerical Study of Turbulent Axisymmetric Jets Impinging on a Flat Plate and Flowing Into an Axisymmetric Cavity
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
410
417
.
17.
Keenan
,
M.
,
Amano
,
R. S.
, and
Ou
,
S.
,
2013
, “
Study of an Impingement Cooling Jet Array for Turbine Blade Cooling With Single and Double Exit Cases
,”
Turbo Expo: Power for Land, Sea, and Air
,
San Antonio, TX
,
June 3–7
, Vol. 55140, American Society of Mechanical Engineers, p. V03AT12A002.
18.
Amano
,
R. S.
,
1983
, “
Turbulence Effect on the Impinging Jet on a Flat Plate
,”
Bull. JSME
,
26
(
221
), pp.
1891
1899
.
19.
Amano
,
R. S.
, and
Neusen
,
K. F.
,
1982
, “
A Numerical and Experimental Investigation of High-Velocity Jets Impinging on a Flat Plate
,”
Proceedings of the Sixth International Symposium on Jet Cutting Technology
,
UK
,
Apr. 6–8
, pp.
107
122
.
20.
Kumar
,
S.
,
Amano
,
R. S.
, and
Lucci
,
J. M.
,
2013
, “
Numerical Simulations of Heat Transfer Distribution of a Two-Pass Square Channel With V-rib Turbulator and Bleed Holes
,”
Heat Mass Transfer
,
49
(
8
), pp.
1141
1158
.
21.
Amano
,
R. S.
,
Abou-Ellail
,
M. M.
, and
Kaseb
,
S.
,
2009
, “
Numerical Predictions of Hydrogen-Air Rectangular Channel Flows Augmented by Catalytic Surface Reactions
,”
ASME International Mechanical Engineering Congress and Exposition
,
Lake Buena Vista, FL
,
Nov. 13–19
, Vol. 43765, pp.
411
426
.
22.
Amano
,
R. S.
,
1987
, “
A Numerical Study of Turbulent Heat Transfer in a Channel With Bends Using Reynolds-Stress Model
,”
Chem. Eng. Commun.
,
51
(
1–6
), pp.
207
219
.
23.
Amano
,
R. S.
, and
Sunden
,
B.
,
2008
,
Thermal Engineering in Power Systems
,
WIT Press
,
UK
, p.
416
, http://www.witpress.com/books/978-1-84564-062-0
24.
Amano
,
R. S.
,
2008
,
Advanced Computational Methods and Experiments in Heat Transfer X
,
WIT Press
,
UK
, pp.
149
157
.
25.
Amano
,
R. S.
, and
Song
,
B.
,
2005
,
Modeling and Simulation of Turbulent Heat Transfer
,
WIT Press
,
UK
, pp.
315
348
.
26.
Amano
,
R. S.
,
2002
,
Heat Transfer in Gas Turbine Systems
,
WIT Press
,
UK
, pp.
227
261
.
27.
Kumar
,
S.
, and
Amano
,
R. S.
,
2021
, “
An Investigation in the Numerical Approach to Solve the Heat Transfer Phenomenon in Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080805
.
28.
Martinez Lucci
,
J.
,
Amano
,
R. S.
, and
Guntur
,
K. S.
,
2007
, “
A Computational Study on Turbulent Flow and Heat Transfer in a Strongly Curved RC/D= 0.65 Turbine Blade Cooling Passage
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Reno, NV
,
Sept. 4–7
, Vol. 48035, pp.
695
706
.
29.
Levy
,
Y.
,
Rao
,
A. G.
,
Erenburg
,
V.
,
Sherbaum
,
V.
,
Gaissinski
,
I.
, and
Krapp
,
V.
,
2012
, “
Pressure Losses for Jet Array Impingement With Crossflow
,”
Turbo Expo: Power for Land, Sea, and Air
,
Copenhagen, Denmark
,
June 11–15
, pp.
139
149
.
30.
Elgammal
,
T.
,
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Enhancements of the Thermal Uniformity Inside a Gas Turbine Dilution Section Using Dimensional Optimization
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102102
.
31.
Al-Hadhrami
,
L. M.
,
Shaahid
,
S.
, and
Al-Mubarak
,
A. A.
,
2011
, “
Jet Impingement Cooling in Gas Turbines for Improving Thermal Efficiency and Power Density
,”
Adv. Gas Turbine Technol.
,
191
, pp.
191
210
.
32.
Amano
,
R. S.
,
Keenan
,
M.
, and
Ou
,
S.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
UK
, pp.
33
62
.
33.
Amano
,
R. S.
,
2014
,
Emerging Topics in Heat Transfer-Enhancement and Heat Exchangers
,
WIT Press
,
UK
, pp.
39
65
.
34.
Yang
,
Y. T.
,
Wei
,
T. C.
, and
Wang
,
Y. H.
,
2011
, “
Numerical Study of Turbulent Slot Jet Impingement Cooling on a Semi-Circular Concave Surface
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
482
489
.
35.
Öztekin
,
E.
,
Aydin
,
O.
, and
Avcı
,
M.
,
2013
, “
Heat Transfer in a Turbulent Slot jet Flow Impinging on Concave Surfaces
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
77
82
.
36.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Jet Impingement on a Dimpled Surface With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
161
170
.
37.
Cornaro
,
C.
,
Fleischer
,
A. S.
, and
Goldstein
,
R. J.
,
1999
, “
Flow Visualization of a Round Jet Impinging on Cylindrical Surfaces
,”
Exp. Therm. Fluid. Sci.
,
20
(
2
), pp.
66
78
.
38.
Singh
,
P.
, and
Ekkad
,
S. V.
,
2018
, “
Detailed Heat Transfer Measurements of Jet Impingement on Dimpled Target Surface Under Rotation
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
031006
.
39.
Patro
,
P.
, and
Garnayak
,
S.
,
2020
, “
Heat Transfer Enhancement From a Heated Plate With Hemispherical Convex Dimples by Forced Convection Along With a Cross Flow Jet Impingement
,”
Int. J. Appl. Mech. Eng.
,
25
(
1
), pp.
127
141
.
40.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3874
3886
.
41.
Jing
,
Q.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2018
, “
Numerical Investigations of Impingement Cooling Performance on Flat and Non-Flat Targets With Dimple/Protrusion and Triangular Rib
,”
Int. J. Heat Mass Transfer
,
126
, pp.
169
190
.
42.
Ekkad
,
S. V.
, and
Kontrovitz
,
D.
,
2002
, “
Jet Impingement Heat Transfer on Dimpled Target Surfaces
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
22
28
.
43.
Kim
,
S. M.
, and
Kim
,
K. Y.
,
2016
, “
Evaluation of Cooling Performance of Impinging Jet Array Over Various Dimpled Surfaces
,”
Heat Mass Transfer
,
52
(
4
), pp.
845
854
.
44.
Vinze
,
R.
,
Khade
,
A.
,
Kuntikana
,
P.
,
Ravitej
,
M.
,
Suresh
,
B.
,
Kesavan
,
V.
, and
Prabhu
,
S. V.
,
2019
, “
Effect of Dimple Pitch and Depth on Jet Impingement Heat Transfer Over Dimpled Surface Impinged by Multiple Jets
,”
Int. J. Therm. Sci.
,
145
, p.
105974
.
45.
Azad
,
G. S.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
186
193
.
46.
Luo
,
L.
,
Wang
,
C.
,
Wang
,
L.
,
Sunden
,
B.
, and
Wang
,
S.
,
2015
, “
Computational Investigation of Dimple Effects on Heat Transfer and Friction Factor in a Lamilloy Cooling Structure
,”
J. Enhanced Heat Transfer
,
22
(
2
), pp.
147
175
.
47.
Chang
,
S. W.
,
Jan
,
Y. J.
, and
Chang
,
S. F.
,
2006
, “
Heat Transfer of Impinging Jet-Array Over Convex-Dimpled Surface
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3045
3059
.
48.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2020
, “
Study on Heat Transfer Enhancement of Gas Turbine Blades
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
91
106
.
49.
Schroder
,
A.
,
Ou
,
S.
, and
Ghia
,
U.
,
2012
, “
Experimental Study of an Impingement Cooling-Jet Array Using an Infrared Thermography Technique
,”
J. Thermophys. Heat Transfer
,
26
(
4
), pp.
590
597
.
50.
Amano
,
R. S.
, and
Song
,
B.
,
2005
, “Simulation of Turbulent Flow in a Duct With and Without Rotation—Cooling Passage of Gas Turbine Blades,”
Modeling and Simulation of Turbulent Heat Transfer
,
WIT Press
,
UK
, pp.
315
348
.
51.
Nourin
,
F.
, and
Amano
,
R. S.
,
2022
, “
Experimental Study on Flow Behavior and Heat Transfer Enhancement With Distinct Dimpled Gas Turbine Blade Internal Cooling Channel
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
072101
.
52.
Nourin
,
F.
, and
Amano
,
R. S.
,
2022
, “
Experimental and Large Eddy Simulation Study for Visualizing Complex Flow Phenomena of Gas Turbine Internal Blade Cooling Channel With No Bendssors
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062104
.
You do not currently have access to this content.