Abstract

Well placement optimization (WPO) plays an essential role in field management and economy. However, it entails massive computational time and demand since hundreds, even thousands, simulation runs are needed. Different types of proxy models have been utilized to address this issue. Among different proxy models, data-driven proxies are preferred as they can determine the combined effect of several parameters without suffering from the type and the number of modeling parameters. This article aims to develop a data-driven proxy model in an artificial intelligence framework adapted to the WPO problem. This proxy estimates and compares the oil recovery for different well configurations. Our contribution is building a dynamic proxy by training a sequence of static proxies in a time-dependent manner to make more benefit from the modeling capability of artificial neural networks (ANNs). The workflow comprises preparing a learning database using experimental design techniques, finding the significant parameters by searching the parameter space, training and validating a series of ANNs to obtain the desired field response, and conducting a blind test to ensure the model performance and generality. This proxy is then coupled with the genetic algorithm to find an optimal well configuration in a test case. Verifying the results obtained by our proxy with those of a commercial simulator shows that the objectives of constructing this proxy for WPO are successfully achieved.

References

1.
Bruyelle
,
J.
, and
Guérillot
,
D.
,
2019
, “
Well Placement Optimization With an Artificial Intelligence Method Applied to Brugge Field
,”
SPE Gas & Oil Technology Showcase and Conference
,
Dubai, UAE
,
October
, Society of Petroleum Engineers.
2.
An
,
C.
,
Zhang
,
P.
,
Wesley
,
A.
,
Bardy
,
G.
,
Hall
,
K.
, and
Erdogan
,
M.
,
2021
, “
A Novel Workflow for Optimizing Well Placement Under Geomechanical Constraints: A Case Study
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033002
.
3.
Al Dossary
,
M. A.
, and
Nasrabadi
,
H.
,
2016
, “
Well Placement Optimization Using Imperialist Competitive Algorithm
,”
J. Pet. Sci. Eng.
,
147
(
1
), pp.
237
248
.
4.
Chen
,
H.
,
Feng
,
Q.
,
Zhang
,
X.
,
Wang
,
S.
,
Zhou
,
W.
, and
Liu
,
C.
,
2018
, “
Well Placement Optimization for Offshore Oilfield Based on Theil Index and Differential Evolution Algorithm
,”
J. Pet. Explor. Prod. Technol.
,
8
(
4
), pp.
1225
1233
.
5.
Ghorayeb
,
K.
,
Harb
,
A.
, and
Kassem
,
H.
,
2020
, “
Black Hole Particle Swarm Optimization for Optimal Well Placement in Field Development Planning and Methods of Use
,”
US Patents
,
16/563,043
.
6.
Naderi
,
M.
, and
Khamehchi
,
E.
,
2017
, “
Well Placement Optimization Using Metaheuristic Bat Algorithm
,”
J. Pet. Sci. Eng.
,
150
(
1
), pp.
348
354
.
7.
Naderi
,
F.
,
Siavashi
,
M.
, and
Nakhaee
,
A.
,
2021
, “
A Novel Streamline-Based Objective Function for Well Placement Optimization in Waterfloods
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102104
.
8.
Sayarpour
,
M.
,
Kabir
,
C. S.
, and
Lake
,
L. W.
,
2009
, “
Field Applications of Capacitance-Resistance Models in Waterfloods
,”
SPE Reservoir Eval. Eng.
,
12
(
6
), pp.
853
864
.
9.
Sharifi
,
M.
,
Kelkar
,
M.
,
Bahar
,
A.
, and
Slettebo
,
T.
,
2014
, “
Dynamic Ranking of Multiple Realizations by Use of the Fast-Marching Method
,”
SPE J.
,
19
(
6
), pp.
1069
1082
.
10.
Jaber
,
A. K.
,
Al-Jawad
,
S. N.
, and
Alhuraishawy
,
A. K.
,
2019
, “
A Review of Proxy Modeling Applications in Numerical Reservoir Simulation
,”
Arab. J. Geosci.
,
12
(
22
), p.
701
.
11.
Santner
,
T. J.
,
Williams
,
B. J.
,
Notz
,
W. I.
, and
Williams
,
B. J.
,
2003
,
The Design and Analysis of Computer Experiments
, Vol.
1
,
Springer
,
New York
.
12.
Chen
,
Y.
,
Jiang
,
C.
,
Yin
,
G.
,
Wojtanowicz
,
A. K.
, and
Zhang
,
D.
,
2020
, “
Permeability and Effective Stress in Dipping Gas Shale Formation With Bedding—Experimental Study
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103002
.
13.
Rana
,
S.
,
Ertekin
,
T.
, and
King
,
G. R.
,
2018
, “
An Efficient Probabilistic Assisted History Matching Tool Using Gaussian Processes Proxy Models: Application to Coalbed Methane Reservoir
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
September
, Society of Petroleum Engineers.
14.
Ahmadi
,
M. A.
,
Zendehboudi
,
S.
, and
James
,
L. A.
,
2018
, “
Developing a Robust Proxy Model of CO2 Injection: Coupling Box–Behnken Design and a Connectionist Method
,”
Fuel
,
215
(
1
), pp.
904
914
.
15.
Alenezi
,
F.
, and
Mohaghegh
,
S.
,
2016
, “
A Data-Driven Smart Proxy Model for a Comprehensive Reservoir Simulation
,”
2016 4th Saudi International Conference on Information Technology (Big Data Analysis) (KACSTIT)
,
Saudi Arabia
,
November
, IEEE.
16.
Amini
,
S.
, and
Mohaghegh
,
S.
,
2019
, “
Application of Machine Learning and Artificial Intelligence in Proxy Modeling for Fluid Flow in Porous Media
,”
Fluids
,
4
(
3
), p.
126
.
17.
Negash
,
B. M.
,
Ayoub
,
M. A.
,
Jufar
,
S. R.
, and
Robert
,
A. J.
,
2017
, “
History Matching Using Proxy Modeling and Multiobjective Optimizations
,”
ICIPEG
,
Singapore
, Springer, pp.
3
16
.
18.
Vida
,
G.
,
Shahab
,
M. D.
, and
Mohammad
,
M.
,
2019
, “
Smart Proxy Modeling of SACROC CO2-EOR
,”
Fluids
,
4
(
2
), p.
85
.
19.
Lee
,
K. J.
,
2020
, “
Data-Driven Models to Predict Hydrocarbon Production From Unconventional Reservoirs by Thermal Recovery
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
123301
.
20.
Al-Aghbari
,
M.
,
Gujarathi
,
A. M.
,
Al-Wadhahi
,
M.
, and
Chakraborti
,
N.
,
2022
, “
Hybrid Multi-Objective Optimization Approach in Water Flooding
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
063008
.
21.
Haghshenas
,
Y.
,
Emami Niri
,
M.
,
Amini
,
S.
, and
Amiri Kolajoobi
,
R.
,
2020
, “
Developing Grid-Based Smart Proxy Model to Evaluate Various Water Flooding Injection Scenarios
,”
Pet. Sci. Technol.
,
38
(
17
), pp.
870
881
.
22.
Haghshenas
,
Y.
,
Niri
,
M. E.
,
Amini
,
S.
, and
Kolajoobi
,
R. A.
,
2021
, “
A Physically-Supported Data-Driven Proxy Modeling Based on Machine Learning Classification Methods: Application to Water Front Movement Prediction
,”
J. Pet. Sci. Eng.
,
196
(
1
), p.
107828
.
23.
Kolajoobi
,
R. A.
,
Haddadpour
,
H.
, and
Niri
,
M. E.
,
2021
, “
Investigating the Capability of Data-Driven Proxy Models as Solution for Reservoir Geological Uncertainty Quantification
,”
J. Pet. Sci. Eng.
,
205
(
1
), p.
108860
.
24.
Masroor
,
M.
,
Emami Niri
,
M.
,
Rajabi-Ghozloo
,
A. H.
,
Sharifinasab
,
M. H.
, and
Sajjadi
,
M.
,
2022
, “
Application of Machine and Deep Learning Techniques to Estimate NMR-Derived Permeability From Conventional Well Logs and Artificial 2D Feature Maps
,”
J. Pet. Explor. Prod. Technol.
,
12
(11), pp.
1
17
.
25.
Onwunalu
,
J.
,
2006
, “
Optimization of Nonconventional Well Placement Using Genetic Algorithms and Statistical Proxy
,”
Master's thesis
,
Stanford University
,
Stanford, CA
.
26.
Hassani
,
H.
,
Sarkheil
,
H.
,
Foroud
,
T.
, and
Karimpooli
,
S.
,
2011
, “
A Proxy Modeling Approach to Optimization Horizontal Well Placement
,”
45th US Rock Mechanics/Geomechanics Symposium
,
San Francisco, CA
,
June
.
27.
Pouladi
,
B.
,
Keshavarz
,
S.
,
Sharifi
,
M.
, and
Ahmadi
,
M. A.
,
2017
, “
A Robust Proxy for Production Well Placement Optimization Problems
,”
Fuel
,
206
(
1
), pp.
467
481
.
28.
Amini
,
S.
,
2015
,
Developing a Grid-Based Surrogate Reservoir Model Using Artificial Intelligence
,
West Virginia University
,
Morgantown, WV
.
29.
Nwachukwu
,
A.
,
Jeong
,
H.
,
Pyrcz
,
M.
, and
Lake
,
L. W.
,
2018
, “
Fast Evaluation of Well Placements in Heterogeneous Reservoir Models Using Machine Learning
,”
J. Pet. Sci. Eng.
,
163
(
1
), pp.
463
475
.
30.
Chu
,
M. G.
,
Min
,
B.
,
Kwon
,
S.
,
Park
,
G.
,
Kim
,
S.
, and
Huy
,
N. X.
,
2019
, “
Determination of an Infill Well Placement Using a Data-Driven Multi-Modal Convolutional Neural Network
,”
J. Pet. Sci. Eng.
,
206
(
1
), p.
106805
.
31.
Lin
,
Y.
,
Cunningham
,
G. A.
, and
Coggeshall
,
S. V.
,
1996
, “
Input Variable Identification—Fuzzy Curves and Fuzzy Surfaces
,”
Fuzzy Sets Syst.
,
82
(
1
), pp.
65
71
.
32.
Panjalizadeh
,
H.
,
Alizadeh
,
N.
, and
Mashhadi
,
H.
,
2014
, “
A Workflow for Risk Analysis and Optimization of Steam Flooding Scenario Using Static and Dynamic Proxy Models
,”
J. Pet. Sci. Eng.
,
121
(
1
), pp.
78
86
.
You do not currently have access to this content.