Abstract

Power generation systems will reduce carbon emissions primarily through the application of low or even zero carbon fuels under the global decarbonization trend. Ammonia is an ideal alternative fuel because it is cheap, readily available, and easy to store and transport. However, its mediocre combustion performance has raised concerns about its use in engines. The objective of this paper was to evaluate the amount of hydrogen that would need to be added to the ammonia from a laminar flame speed perspective if converting existing spark ignition engines to ammonia operation. The benchmark for determining the hydrogen blending ratio was to help ammonia achieve efficient combustion in the cylinder comparable to that of gasoline or natural gas. The results showed that hydrogen addition had the potential to greatly improve engine efficiency and emissions, although the combustion kinetics of ammonia-hydrogen mixtures were still dominated by ammonia with hydrogen addition levels below 60%. In addition, the hydrogen addition ratio was mainly determined by the kernel inception process, as this burning stage heavily influenced the repeatability of the combustion and the ease of combustion control. Also, at least 20% of hydrogen was required to be added to ammonia to adapt the engine to various operating conditions, while such a strategy still cannot help ammonia to obtain a rapid burning event compatible with gasoline or methane. Moreover, natural gas engines were more suitable for retrofitting to ammonia-hydrogen operation because they have a higher compression ratio and their combustion chambers are less demanding on the fuel laminar flame speed. Further, ammonia lean operation was recommended to be avoided in spark ignition configurations. Altogether, all of these findings support the need for additional efforts in ammonia engine optimizations and onboard ammonia dissociation system efficiency improvements.

References

1.
Liu
,
J.
, and
Wang
,
H.
,
2022
, “
Machine Learning Assisted Modeling of Mixing Timescale for LES/PDF of High-Karlovitz Turbulent Premixed Combustion
,”
Combust. Flame
,
238
, p.
111895
.
2.
Reiter
,
A. J.
, and
Kong
,
S. C.
,
2011
, “
Combustion and Emissions Characteristics of Compression-Ignition Engine Using Dual Ammonia-Diesel Fuel
,”
Fuel
,
90
(
1
), pp.
87
97
.
3.
Haputhanthri
,
S. O.
,
Maxwell
,
T. T.
,
Fleming
,
J.
, and
Austin
,
C.
,
2015
, “
Ammonia and Gasoline Fuel Blends for Spark Ignited Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062201
.
4.
Mørch
,
C. S.
,
Bjerre
,
A.
,
Gøttrup
,
M. P.
,
Sorenson
,
S. C.
, and
Schramm
,
J.
,
2011
, “
Ammonia/Hydrogen Mixtures in an SI-Engine: Engine Performance and Analysis of a Proposed Fuel System
,”
Fuel
,
90
(
2
), pp.
854
864
.
5.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2008
, “
Using Ammonia as a Sustainable Fuel
,”
J. Power Sources
,
185
(
1
), pp.
459
465
.
6.
Mounaïm-Rousselle
,
C.
, and
Brequigny
,
P.
,
2020
, “
Ammonia as Fuel for Low-Carbon Spark-Ignition Engines of Tomorrow's Passenger Cars
,”
Front. Mech. Eng.
,
6
, p.
70
.
7.
Chai
,
W. S.
,
Bao
,
Y.
,
Jin
,
P.
,
Tang
,
G.
, and
Zhou
,
L.
,
2021
, “
A Review on Ammonia, Ammonia-Hydrogen and Ammonia-Methane Fuels
,”
Renew. Sustain. Energy Rev.
,
147
, p.
111254
.
8.
Gross
,
C. W.
, and
Kong
,
S. C.
,
2013
, “
Performance Characteristics of a Compression-Ignition Engine Using Direct-Injection Ammonia–DME Mixtures
,”
Fuel
,
103
, pp.
1069
1079
.
9.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2009
, “
Ammonia as a Green Fuel and Hydrogen Source for Vehicular Applications
,”
Fuel Process. Technol.
,
90
(
5
), pp.
729
737
.
10.
Ryu
,
K.
,
Zacharakis-Jutz
,
G. E.
, and
Kong
,
S. C.
,
2014
, “
Performance Enhancement of Ammonia-Fueled Engine by Using Dissociation Catalyst for Hydrogen Generation
,”
Int. J. Hydrogen Energy
,
39
(
5
), pp.
2390
2398
.
11.
Comotti
,
M.
, and
Frigo
,
S.
,
2015
, “
Hydrogen Generation System for Ammonia-Hydrogen Fuelled Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
40
(
33
), pp.
10673
10686
.
12.
Fieseler
,
K.
,
Linker
,
T.
,
Patterson
,
M.
,
Rem
,
D.
, and
Jacobs
,
T. J.
,
2020
, “
Estimating Laminar Flame Speed and Ignition Delay for a Series of Natural Gas Mixtures at IC Engine-Relevant Conditions
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062301
.
13.
Pearsall
,
T. J.
, and
Garabedian
,
C. G.
,
1967
, “
Combustion of Anhydrous Ammonia in Diesel Engines
,” SAE Technical Paper No. 670947.
14.
Cornelius
,
W.
,
Huellmantel
,
L. W.
, and
Mitchell
,
H. R.
,
1965
, “
Ammonia as an Engine Fuel
,” SAE Technical Paper No. 650052.
15.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2019
, “
Combustion Characteristics of Ammonia in a Modern Spark-Ignition Engine
,” SAE Technical Paper No. 2019-24-0237.
16.
Frigo
,
S.
, and
Gentili
,
R.
,
2013
, “
Analysis of the Behaviour of a 4-Stroke SI Engine Fuelled With Ammonia and Hydrogen
,”
Int. J. Hydrogen Energy
,
38
(
3
), pp.
1607
1615
.
17.
Sun
,
X.
,
Liu
,
H.
,
Duan
,
X.
,
Guo
,
H.
,
Li
,
Y.
,
Qiao
,
J.
,
Liu
,
Q.
, and
Liu
,
J.
,
2022
, “
Effect of Hydrogen Enrichment on the Flame Propagation, Emissions Formation and Energy Balance of the Natural Gas Spark Ignition Engine
,”
Fuel
,
307
, p.
121843
.
18.
Dimitriou
,
P.
, and
Javaid
,
R.
,
2020
, “
A Review of Ammonia as a Compression Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7098
7118
.
19.
Klüssmann
,
J. N.
,
Ekknud
,
L. R.
,
Ivarsson
,
A.
, and
Schramm
,
J.
,
2020
, “Ammonia Application in CI Engines,” Special Report, A Report from the Advanced Motor Fuels Technology Collaboration Programme.
20.
ANSYS Inc.
,
2021
,
Model Fuel Library Getting Started Guide
,
ANSYS Inc.
,
San Diego, CA
.
21.
Goldmann
,
A.
, and
Dinkelacker
,
F.
,
2018
, “
Approximation of Laminar Flame Characteristics on Premixed Ammonia/Hydrogen/Nitrogen/Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
224
, pp.
366
378
.
22.
Sileghem
,
L.
,
Alekseev
,
V. A.
,
Vancoillie
,
J.
,
Van Geem
,
K. M.
,
Nilsson
,
E. J. K.
,
Verhelst
,
S.
, and
Konnov
,
A. A.
,
2013
, “
Laminar Burning Velocity of Gasoline and the Gasoline Surrogate Components Iso-Octane, n-Heptane and Toluene
,”
Fuel
,
112
, pp.
355
365
.
23.
Liao
,
Y. H.
, and
Roberts
,
W. L.
,
2016
, “
Laminar Flame Speeds of Gasoline Surrogates Measured With the Flat Flame Method
,”
Energy Fuels
,
30
(
2
), pp.
1317
1324
.
24.
Cooper
,
S. P.
,
Mathieu
,
O.
,
Schoegl
,
I.
, and
Petersen
,
E. L.
,
2020
, “
High-Pressure Ignition Delay Time Measurements of a Four-Component Gasoline Surrogate and Its High-Level Blends With Ethanol and Methyl Acetate
,”
Fuel
,
275
, p.
118016
.
25.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
,
2019
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
.
26.
Gu
,
X. J.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
.
27.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
,
1994
, “
Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, and Air
,”
Symp. Int. Combust.
,
25
(
1
), pp.
1317
1323
.
28.
Hu
,
E.
,
Li
,
X.
,
Meng
,
X.
,
Chen
,
Y.
,
Cheng
,
Y.
,
Xie
,
Y.
, and
Huang
,
Z.
,
2015
, “
Laminar Flame Speeds and Ignition Delay Times of Methane–Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
158
, pp.
1
10
.
29.
Krejci
,
M. C.
,
Mathieu
,
O.
,
Vissotski
,
A. J.
,
Ravi
,
S.
,
Sikes
,
T. G.
,
Petersen
,
E. L.
,
Kérmonès
,
A.
,
Metcalfe
,
W.
, and
Curran
,
H. J.
,
2013
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021503
.
30.
Dahoe
,
A. E.
,
2005
, “
Laminar Burning Velocities of Hydrogen–Air Mixtures From Closed Vessel Gas Explosions
,”
J. Loss Prev. Process Ind.
,
18
(
3
), pp.
152
166
.
31.
Bhaskaran
,
K. A.
,
Gupta
,
M. C.
, and
Just
,
T.
,
1973
, “
Shock Tube Study of the Effect of Unsymmetric Dimethyl Hydrazine on the Ignition Characteristics of Hydrogen-Air Mixtures
,”
Combust. Flame
,
21
(
1
), pp.
45
48
.
32.
Das
,
A. K.
,
Sung
,
C. J.
,
Zhang
,
Y.
, and
Mittal
,
G.
,
2012
, “
Ignition Delay Study of Moist Hydrogen/Oxidizer Mixtures Using a Rapid Compression Machine
,”
Int. J. Hydrogen Energy
,
37
(
8
), pp.
6901
6911
.
33.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.
34.
Takizawa
,
K.
,
Takahashi
,
A.
,
Tokuhashi
,
K.
,
Kondo
,
S.
, and
Sekiya
,
A.
,
2008
, “
Burning Velocity Measurements of Nitrogen-Containing Compounds
,”
J. Hazard. Mater.
,
155
(
1–2
), pp.
144
152
.
35.
Lee
,
J. H.
,
Lee
,
S. I.
, and
Kwon
,
O. C.
,
2010
, “
Effects of Ammonia Substitution on Hydrogen/Air Flame Propagation and Emissions
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11332
11341
.
36.
Chen
,
Z.
,
2017
, “
Effects of Radiation Absorption on Spherical Flame Propagation and Radiation-Induced Uncertainty in Laminar Flame Speed Measurement
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1129
1136
.
37.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
38.
Dong
,
C.
,
Zhou
,
Q.
,
Zhao
,
Q.
,
Zhang
,
Y.
,
Xu
,
T.
, and
Hui
,
S.
,
2009
, “
Experimental Study on the Laminar Flame Speed of Hydrogen/Carbon Monoxide/Air Mixtures
,”
Fuel
,
88
(
10
), pp.
1858
1863
.
39.
Fisher
,
C. J.
,
1977
, “
A Study of Rich Ammonia/Oxygen/Nitrogen Flames
,”
Combust. Flame
,
30
, pp.
143
149
.
40.
Ravi
,
S.
, and
Petersen
,
E. L.
,
2012
, “
Laminar Flame Speed Correlations for Pure-Hydrogen and High-Hydrogen Content Syngas Blends With Various Diluents
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19177
19189
.
41.
Li
,
J.
,
Huang
,
H.
,
Kobayashi
,
N.
,
Wang
,
C.
, and
Yuan
,
H.
,
2017
, “
Numerical Study on Laminar Burning Velocity and Ignition Delay Time of Ammonia Flame With Hydrogen Addition
,”
Energy
,
126
, pp.
796
809
.
42.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.
43.
Liu
,
Z.
, and
Liu
,
J.
,
2022
, “
Machine Learning Assisted Analysis of an Ammonia Engine Performance
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p.
112307
.
44.
Liu
,
J.
,
Huang
,
Q.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2022
, “
Comparison of Random Forest and Neural Network in Modeling the Performance and Emissions of a Natural Gas Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032310
.
45.
Bastani
,
P.
,
Heywood
,
J. B.
, and
Hope
,
C.
,
2012
, “
Fuel Use and CO2 Emissions Under Uncertainty From Light-Duty Vehicles in the US to 2050
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042202
.
You do not currently have access to this content.