Abstract

The study presents the investigation on heat transfer distribution along a gas turbine blade internal cooling channel. Six different cases were considered in this study, using the smooth surface channel as a baseline. Three different dimples depth-to-diameter ratios with 0.1, 0.25, and 0.50 were considered. Different combinations of partial spherical and leaf dimples were also studied with the Reynolds numbers of 6,000, 20,000, 30,000, 40,000, and 50,000. In addition to the experimental investigation, the numerical study was conducted using a large eddy simulation (LES) to validate the data. It was found that the highest depth-to-diameter ratio showed the highest heat transfer rate. However, the deepest dimpled channel shows the highest pressure drop, which affects the overall thermal performance of the cooling channel. The results showed that the leaf dimpled surface is the best cooling channel based on the highest Reynolds number's heat transfer enhancement and friction factor. However, at the lowest Reynolds number, partial spherical dimples with a 0.25 depth-to-diameter ratio showed the highest thermal performance.

References

1.
Rathore
,
S. S.
,
Kar
,
V.
,
Sanjay
,
S.
, and
Mishra
,
S.
,
2021
, “
Thermodynamic Analysis of Aeroderivative Gas Turbine Engine Featuring Ceramic Matrix Composite Rotating Blades
,”
SAE Technical Paper No.
No. 2021-01-0033
.
2.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080801
.
3.
Nourin
,
F. N.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Jet Impingement Cooling for Gas Turbine Blade With In-Line and Staggered Nozzle Arrays
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
169
182
.
4.
Kumar
,
S.
,
Amano
,
R. S.
, and
Lucci
,
J. M.
,
2013
, “
Numerical Simulations of Heat Transfer Distribution of a Two-Pass Square Channel With V-Rib Turbulator and Bleed Holes
,”
Heat Mass Transfer
,
49
(
8
), pp.
1141
1158
.
5.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Abbas
,
A. I.
, and
Amano
,
R. S.
,
2020
, “
Heat Transfer Evaluation for a Two-Pass Smooth Wall Channel: Stationary and Rotating Cases
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061305
.
6.
Salem
,
A. R.
,
Nourin
,
F. N.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
.
7.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2017
, “
Cooling of Turbine Blades With Expanded Exit Holes: Computational Analyses of Leading Edge and Pressure-Side of a Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042004
.
8.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2016
, “
Cooling of Turbine Blade Surface With Expanded Exit Holes: Computational Suction-Side Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
051602
.
9.
Khalil
,
A.
,
Kayed
,
H.
,
Hanafi
,
A.
,
Nemitallah
,
M.
, and
Habib
,
M.
,
2019
, “
Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042206
.
10.
Saravani
,
M. S.
,
Amano
,
R. S.
,
DiPasquale
,
N. J.
, and
Halmo
,
J. W.
,
2020
, “
Turning Guide Vane Effect on Internal Cooling of Two-Passage Channel With Parallel Ribs
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091303
.
11.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112001
.
12.
Masci
,
R.
, and
Sciubba
,
E.
,
2018
, “
A Lumped Thermodynamic Model of Gas Turbine Blade Cooling: Prediction of First-Stage Blades Temperature and Cooling Flow Rates
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020901
.
13.
Elgammal
,
T.
,
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Enhancements of the Thermal Uniformity Inside a Gas Turbine Dilution Section Using Dimensional Optimization
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102102
.
14.
Saravani
,
M. S.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2018
, “
Effect of Buoyancy and Density Ratio on Heat Transfer in a Smooth Cooling Channel of a Gas Turbine Blade
,”
Turbo Expo: Power for Land, Sea, and Air
,
Oslo, Norway
,
June 11–15
, Vol.
51081
, p.
V05AT11A008
.
15.
Amano
,
R. S.
, and
Sunden
,
B.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press Book Series
,
Ashurst, UK
, p.
252
.
16.
Amano
,
R. S.
, and
Sunden
,
B.
,
2010
,
Computational Fluid Dynamics and Heat Transfer-Emerging Topics
,
WIT Press
,
Ashurst, UK
, p.
512
.
17.
Amano
,
R. S.
, and
Sunden
,
B.
,
2008
,
Thermal Engineering in Power Systems
,
WIT Press
,
Ashurst, UK
, p.
416
.
18.
Amano
,
R. S.
,
Keenan
,
M.
, and
Ou
,
S.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
Ashurst, UK
, pp.
33
62
.
19.
Amano
,
R. S.
,
2014
, “Heat Transfer Enhancement by Turbulent Impinging Jets and Ribbed Channel Flows,”
Emerging Topics in Heat Transfer-Enhancement and Heat Exchangers
,
IT Press
,
UK
.
20.
Amano
,
R. S.
,
2008
, “Advances in Gas Turbine Blade Cooling Technology,”
Advanced Computational Methods and Experiments in Heat Transfer X
,
WIT Press
,
UK
.
21.
Amano
,
R. S.
, and
Song
,
B.
,
2005
, “Simulation of Turbulent Flow in a Duct With and Without Rotation—Cooling Passage of Gas Turbine Blades,”
Modeling and Simulation of Turbulent Heat Transfer
,
WIT Press
,
UK
, pp.
315
348
.
22.
Amano
,
R. S.
,
2002
, “Heat Transfer Predictions of Stator/Rotor Blades and Rotating Disk,”
Heat Transfer in Gas Turbine Systems
,
WIT Press
,
UK
, pp.
227
261
.
23.
Amano
,
R. S.
,
1995
,
Turbulence, Heat and Mass Transfer
,
K.
Hanjalic
, and
J. C. F.
Pereira
, eds.,
Begell House, Inc.
,
Danbury, CT
, pp.
459
465
.
24.
Amano
,
R. S.
,
Arakawa
,
H.
, and
Suga
,
K.
,
2014
, “
Turbulent Heat Transfer in a Two-Pass Cooling Channel by Several Wall Turbulence Models
,”
Int. J. Heat Mass Transfer
,
77
, pp.
406
418
.
25.
Kumar
,
S.
, and
Amano
,
R. S.
,
2015
, “
Experimental Investigation of Heat Transfer and Flow Using V and Broken V Ribs Within Gas Turbine Blade Cooling Passage
,”
Heat Mass Transfer
,
51
(
5
), pp.
631
647
.
26.
Amano
,
R. S.
, and
Pavelic
,
V.
,
1992
, “
A Study of Rotor Cavities and Heat Transfer in a Cooling Process in a Gas Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
,
Cologne, Germany
,
June 1–4
, American Society of Mechanical Engineers, Vol.
78965
, p.
V004T09A030
.
27.
Amano
,
R. S.
,
Wang
,
K. D.
, and
Pavelic
,
V.
,
1994
, “
A Study of Rotor Cavities and Heat Transfer in a Cooling Process in a Gas Turbine
,”
ASME J. Turbomach.
,
116
(
2
), pp.
333
338
.
28.
Rahman
,
M. L.
,
Salsabil
,
Z.
,
Yasmin
,
N.
,
Nourin
,
F. N.
, and
Ali
,
M.
,
2016
, “
Effect of Using Ethanol and Methanol on Thermal Performance of a Closed Loop Pulsating Heat Pipe (CLPHP) With Different Filling Ratios
,”
AIP Conf. Proc.
,
1754
(
1
), p.
050014
.
29.
Rahman
,
M. L.
,
Nourin
,
F. N.
,
Salsabil
,
Z.
,
Yasmin
,
N.
, and
Ali
,
M.
,
2016
, “
An Experimental Study on the Performance of Closed Loop Pulsating Heat Pipe (CLPHP) With Methanol as a Working Fluid
,”
AIP Conf. Proc.
,
1754
(
1
), p.
050012
.
30.
Kesarev
,
V. S.
, and
Kozlov
,
A. P.
,
1993
, “
Convective Heat Transfer in Turbulized Flow Past a Hemispherical Cavity
,”
Heat Transf. Res.
,
25
(
2
), pp.
156
160
.
31.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.
32.
Nishida
,
S.
,
Murata
,
A.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2009
, “
Measurement of Heat and Fluid Flow on Surface With Teardrop-Shaped Dimples
,”
Proceedings of the Asian Congress on Gas Turbines, 2009-8
,
Tokyo, Japan
,
Aug. 24–26
, pp.
1
4
.
33.
Kim
,
H. M.
,
Moon
,
M. A.
, and
Kim
,
K. Y.
,
2011
, “
Shape Optimization of Inclined Elliptic Dimples in a Cooling Channel
,”
J. Thermophys. Heat Transfer
,
25
(
3
), pp.
472
476
.
34.
Park
,
J.
, and
Ligrani
,
P. M.
,
2005
, “
Numerical Predictions of Heat Transfer and Fluid Flow Characteristics for Seven Different Dimpled Surfaces in a Channel
,”
Numer. Heat Transfer, Part A
,
47
(
3
), pp.
209
232
.
35.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Weigand
,
B.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
3
), p.
031901
.
36.
Shen
,
Z.
,
Qu
,
H.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2013
, “
Effect of Bleed Hole on Flow and Heat Transfer Performance of U-Shaped Channel With Dimple Structure
,”
Int. J. Heat Mass Transfer
,
66
, pp.
10
22
.
37.
Xie
,
G.
,
Liu
,
J.
,
Ligrani
,
P. M.
, and
Zhang
,
W.
,
2013
, “
Numerical Analysis of Flow Structure and Heat Transfer Characteristics in Square Channels With Different Internal-Protruded Dimple Geometrics
,”
Int. J. Heat Mass Transfer
,
67
, pp.
81
97
.
38.
Xie
,
G.
,
Sundén
,
B.
, and
Zhang
,
W.
,
2011
, “
Comparisons of Pins/Dimples/Protrusions Cooling Concepts for a Turbine Blade Tip-Wall at High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
6
), p.
061902
.
39.
Jeong
,
M.
,
Ha
,
M. Y.
, and
Park
,
Y. G.
,
2019
, “
Numerical Investigation of Heat Transfer Enhancement in a Dimpled Cooling Channel With Different Angles of the Vortex Generator
,”
Int. J. Heat Mass Transfer
,
144
, p.
118644
.
40.
Kumar
,
S.
, and
Amano
,
R. S.
,
2021
, “
An Investigation in the Numerical Approach to Solve the Heat Transfer Phenomenon in Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080805
.
41.
Galeana
,
D.
, and
Beyene
,
A.
,
2021
, “
Gas Turbine Blade Heat Transfer and Internal Swirl Cooling Flow Experimental Study Using Liquid Crystals and Three-Dimensional Stereo-Particle Imaging Velocimetry
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102106
.
42.
Sheikhi
,
M. R. H.
,
Safari
,
M.
, and
Metghalchi
,
H.
,
2012
, “
Large Eddy Simulation for Local Entropy Generation Analysis of Turbulent Flows
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041603
.
43.
Amano
,
R. S.
,
Lucci
,
J. M.
,
Guntur
,
K.
, and
Song
,
B.
,
2012
, “
Numerical Study of the Thermal Development in a Rotating Cooling Passage
,”
Heat Mass Transfer
,
48
(
6
), pp.
1011
1022
.
44.
Amano
,
R. S.
,
Ekkad
,
S.
, and
Wroblewski
,
D.
,
2000
, “
Heat Transfer in Turbomachinery, HTD—Vol. 366-3
,”
Proceedings of The ASME Heat Transfer Division
,
ASME
,
New York
.
45.
Amano
,
R. S.
,
1998
, “Turbulent Heat Transfer in Corrugated Wall Channel,”
Computer Simulations in Compact Heat Exchangers
,
Computational Mechanics Publications
,
UK
, pp.
115
149
.
46.
Amano
,
R. S.
,
Abou-Ellail
,
M. M.
,
Elhaw
,
S.
, and
Saeed Ibrahim
,
M.
,
2013
, “
Numerical Simulation of Hydrogen-Air Reacting Flows in Rectangular Channels With Catalytic Surface Reactions
,”
Heat Mass Transfer
,
49
(
9
), pp.
1243
1260
.
47.
Amano
,
R. S.
,
Abou-Ellail
,
M. M.
, and
Kaseb
,
S.
,
2009
, “
Numerical Predictions of Hydrogen-Air Rectangular Channel Flows Augmented by Catalytic Surface Reactions
,”
ASME International Mechanical Engineering Congress and Exposition
,
Lake Buena Vista, FL
,
Nov. 13–19
, Vol.
43765
, pp.
411
426
.
48.
Maruszewski
,
J. P.
, and
Amano
,
R. S.
,
1992
, “
Grid Generation and Its Application to Turbulent Separated Flows
,”
Numer. Heat Transfer, Part B
,
21
(
2
), pp.
183
197
.
49.
Choi
,
J. C.
, and
Amano
,
R. S.
,
1992
, “
Application of a Higher-Order Turbulence Closure Model to Plane Jet
,”
Numer. Heat Transfer, Part A
,
21
(
1
), pp.
21
35
.
50.
Amano
,
R. S.
,
1989
, “
Turbulence Energy Redistributive Model
,”
Numer. Methods Laminar Turbul. Flow
,
6
, pp.
319
329
.
51.
Amano
,
R. S.
, and
Maruszewski
,
J. P.
,
1988
, “
Computations of Separating Flows by Using Boundary—Fitted Curvilinear Coordinate
,”
Proceedings of the 25th National Heat Transfer Conference of Japan
,
Kanazawa, Japan
, Vol.
2
, pp.
160
162
.
52.
Maruszewski
,
J. P.
, and
Amano
,
R. S.
,
1988
,
Numerical Grid Generation in Computational Fluid Mechanics ‘88
,
S.
Sengupta
,
J.
Hauser
,
P. R.
Eiseman
, and
J. F.
Thompson
, eds.,
Pineridge Press Limited
,
UK
, pp.
885
894
.
53.
Amano
,
R. S.
, and
Chai
,
J. C.
,
1988
, “
A Closure Model of Diffusion Transport of the Reynolds-Stress Equations and its Application to a Turbulent Step Flow
,”
Transport Phenomena in Turbulent Flows: Theory, Experiment, and Numerical Simulation
, pp.
649
660
.
54.
Maruszewski
,
J. P.
, and
Amano
,
R. S.
,
1988
, “
A Study of Turbulent Flow Computations in an Angled Duct With a Step
,”
Advances and Applications in Computational Fluid Dynamics
, pp.
43
47
.
55.
Amano
,
R. S.
,
1986
, “
Turbulence Energy and Diffusion Transport in a Separating and Reattaching Flow
,”
22nd Joint Propulsion Conference
,
June
, p.
1724
.
56.
Amano
,
R. S.
, and
Chai
,
J. C.
,
1988
, “
Transport Models of the Turbulent Velocity-Temperature Products for Computations of Recirculating Flows
,”
Numer. Heat Transfer, Part A
,
14
(
1
), pp.
75
95
.
57.
Amano
,
R. S.
, and
Goel
,
P.
,
1987
, “
Investigation of Third-Order Closure Model of Turbulence for the Computation of Incompressible Flows in a Channel With a Backward-Facing Step
.
58.
Amano
,
R. S.
,
Bagherlee
,
A.
,
Smith
,
R. J.
, and
Niess
,
T. G.
,
1987
, “
Turbulent Heat Transfer in Corrugated-Wall Channels With and Without Fins
.
59.
Amano
,
R. S.
,
1987
, “
A Numerical Study of Turbulent Heat Transfer in a Channel With Bends Using Reynolds-Stress Model
,”
Chem. Eng. Commun.
,
51
(
1–6
), pp.
207
219
.
60.
Zhiyin
,
Y.
,
2015
, “
Large-Eddy Simulation: Past, Present, and the Future
,”
Chin. J. Aeronaut.
,
28
(
1
), pp.
11
24
.
61.
Noventa
,
G.
,
Massa
,
F.
,
Rebay
,
S.
,
Bassi
,
F.
, and
Ghidoni
,
A.
,
2020
, “
Robustness and Efficiency of an Implicit Time-Adaptive Discontinuous Galerkin Solver for Unsteady Flows
,”
Comput. Fluids
,
204
, p.
104529
.
62.
Visbal
,
M.
,
1986
, “
Evaluation of an Implicit Navier-Stokes Solver for Some Unsteady Separated Flows
,”
Proceedings of the 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference
,
Atlanta, GA
,
May 12–14
, p.
1053
.
63.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
.
64.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2020
, “
Study on Heat Transfer Enhancement of Gas Turbine Blades
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
91
106
.
65.
Wheeler
,
A. J.
, and
Ganji
,
A. R.
,
2010
,
Introduction to Engineering Experimentation
, 3rd ed.,
Pearson Higher Education
,
Upper Saddle River, NJ
.
66.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
,
2005
, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
8
), pp.
839
847
.
You do not currently have access to this content.