Abstract

Oil and gas production in FPSOs (floating, production, storage, and offloading) faces a dual challenge: meeting variation in energy demand while decreasing its negative environmental impact. The present article integrates thermodynamic analysis of oil and gas processing plants and screening analysis to determine the most important operational parameters to lower energy demand and increase efficiency and production. Therefore, the main goals of this study are to identify the contribution of the total effect of the operating parameters in an FPSO with CCUS (CO2 capture, utilization, and storage). Twenty-seven thermodynamic and structural design variables are selected as input parameters for the sensitivity analyses. Four machine learning-based screening analysis algorithms such as smooth spline-analysis of variance (SS-ANOVA), PAWN, gradient boosting machine (GBM), and Morris are adapted to achieve the following objectives: (1) overall power consumption of FPSO, (2) CO2 removal efficiency of carbon capture and storage (CCS), (3) power consumption of CCS, and (4) total oil production. The influence of three real crude oil compositions with variations in gas–oil ratio (GOR) and CO2 content is assessed. The combination of thermodynamic and screening analyses showed that the optimal operating pressure parameters of CCS significantly reduce the energy consumption and exergy destruction of the key main and utility plants. Furthermore, the results indicated that total power consumption, CCS efficiency, and CCS power consumption are much more sensitive to the CO2 content of the fluid reservoir than GOR, while the total oil production is influenced only by the GOR content. Finally, for scenarios with high CO2 or GOR content, the effect of design variable interactions is decisive in changing the separation efficiency and/or the compression unit performance.

References

1.
Romero
,
O. J.
, and
Hupp
,
A.
,
2014
, “
Subsea Electrical Submersible Pump Significance in Petroleum Offshore Production
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p. 012902.
2.
Lyons
,
W. C.
, and
Plisga
,
G. J.
,
2016
,
Standard Handbook of Petroleum and Natural Gas Engineering
,
Gulf Professional Publishing
, pp.
1189
1717
.
3.
Bidgoli
,
A.
,
Heidaryan
,
E.
,
Yanagihara
,
J. I.
, and
Pessôa Filho
,
P. D. A.
,
2021
, “
Assessment of Correlations and Simulation Software to Calculate Phase Diagrams of Pre-Salt Fluids
,”
Pet. Sci. Technol.
,
39
(
11–12
), pp.
410
420
.
4.
Allahyarzadeh
,
A.
,
Hamidishad
,
N.
, and
Yanagihara
,
J. I.
,
2021
, “
Carbon Capture and Storage Energy Consumption and Performance Optimization Using Metamodels and Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
050901
.
5.
Soujoudi
,
R.
, and
Manteufel
,
R.
,
2021
, “
Thermal Performance of Ammonia in Dual Mixed Refrigerant Cycle of Natural Gas Liquefaction Process
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082104
.
6.
Iyengar
,
A. K.
,
Koeppel
,
B. J.
,
Keairns
,
D. L.
,
Woods
,
M. C.
,
Hackett
,
G. A.
, and
Shultz
,
T. R.
,
2021
, “
Performance of a Natural Gas Solid Oxide Fuel Cell System With and Without Carbon Capture
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042104
.
7.
Lin
,
B.
, and
Tan
,
Z.
,
2021
, “
How Much Impact Will Low Oil Price and Carbon Trading Mechanism Have on the Value of Carbon Capture Utilization and Storage (CCUS) Project? Analysis Based on Real Option Method
,”
J. Clean. Prod.
,
298
, p.
126768
.
8.
Ibrahim
,
A. F.
, and
Nasr-El-Din
,
H.
,
2018
, “
An Experimental Study for the Using of Nanoparticle/VES Stabilized CO2 Foam to Improve the Sweep Efficiency in EOR Applications
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Sept. 24–26
.
9.
Ibrahim
,
A. F.
, and
Nasr-El-Din
,
H. A.
,
2020
, “
Stability Improvement of Carbon Dioxide Foam Using Nanoparticles and Viscoelastic Surfactants for Enhanced-Oil-Recovery Applications
,”
SPE Reservoir Eval. Eng.
,
23
(
2
), pp.
414
430
.
10.
Allahyarzadeh-Bidgoli
,
A.
,
de Mello
,
P. E. B.
,
Dezan
,
D. J.
,
Saltara
,
F.
,
Salviano
,
L. O.
, and
Yanagihara
,
J. I.
,
2021
, “
Thermodynamic Analysis and Optimization of a Multi-Stage Compression System for CO2 Injection Unit: NSGA-II and Gradient-Based Methods
,”
J. Braz. Soc. Mech. Sci.
,
43
(
10
), p.
458
.
11.
Falk-Pedersen
,
O.
, and
Dannström
,
H.
,
1997
, “
Separation of Carbon Dioxide From Offshore Gas Turbine Exhaust
,”
Energy Convers. Manage.
,
38
, pp.
81
86
.
12.
Hetland
,
J.
,
Kvamsdal
,
H. M.
,
Haugen
,
G.
,
Major
,
F.
,
Kårstad
,
V.
, and
Tjellander
,
G.
,
2009
, “
Integrating a Full Carbon Capture Scheme Onto a 450 MWe NGCC Electric Power Generation Hub for Offshore Operations: Presenting the Sevan GTW Concept
,”
Appl. Energy
,
86
(
11
), pp.
2298
2307
.
13.
Pan
,
Z.
,
Yan
,
M.
,
Shang
,
L.
,
Li
,
P.
,
Zhang
,
L.
, and
Liu
,
J.
,
2020
, “
Thermoeconomic Analysis of a Combined Natural Gas Cogeneration System With a Supercritical CO2 Brayton Cycle and an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102108
.
14.
Oh
,
S. Y.
,
Binns
,
M.
,
Cho
,
H.
, and
Kim
,
J. K.
,
2016
, “
Energy Minimization of MEA-Based CO2 Capture Process
,”
Appl. Energy
,
169
, pp.
353
362
.
15.
Marbun
,
B. T. H.
,
Santoso
,
D.
,
Kadir
,
W. G. A.
,
Wibowo
,
A.
,
Suardana
,
P.
,
Prabowo
,
H.
,
Susilo
,
D.
, et al
,
2021
, “
Palilu Improvement of Borehole and Casing Assessment of CO2-EOR/CCUS Injection and Production Well Candidates in Sukowati Field, Indonesia in a Well-Based Scale
,”
Energy Rep.
,
7
, pp.
1598
1615
.
16.
Breault
,
R. W.
, and
Shadle
,
L. J.
,
2018
, “
Design, Development, and Operation of an Integrated Fluidized Carbon Capture Unit Using Polyethylenimine Sorbents
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062202
.
17.
Rackley
,
S. A.
,
2017
,
Carbon Capture and Storage
,
Butterworth-Heinemann
,
Amsterdam, The Netherlands
.
18.
Kumar
,
R.
,
Campbell
,
S. W.
, and
Cunningham
,
J. A.
,
2020
, “
Effect of Temperature on the Geological Sequestration of CO2 in a Layered Carbonate Formation
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070907
.
19.
Harkin
,
T.
,
Hoadley
,
A.
, and
Hooper
,
B.
,
2010
, “
Reducing the Energy Penalty of CO2 Capture and Compression Using Pinch Analysis
,”
J. Clean. Prod.
,
18
(
9
), pp.
857
866
.
20.
Dezan
,
D. J.
,
Rocha
,
A. D.
, and
Ferreira
,
W. G.
,
2020
, “
Parametric Sensitivity Analysis and Optimisation of a Solar Air Heater With Multiple Rows of Longitudinal Vortex Generators
,”
Appl. Energy
,
263
, p.
114556
.
21.
Allahyarzadeh-Bidgoli
,
A.
,
Salviano
,
L. O.
,
Dezan
,
D. J.
,
de Oliveira Junior
,
S.
, and
Yanagihara
,
J. I.
,
2018
, “
Energy Optimization of an FPSO Operating in the Brazilian Pre-Salt Region
,”
Energy
,
164
, pp.
390
399
.
22.
Allahyarzadeh-Bidgoli
,
A.
,
Salviano
,
L. O.
,
Dezan
,
D. J.
,
de Oliveira Junior
,
S.
, and
Yanagihara
,
J. I.
,
2019
, “
FPSO Fuel Consumption and Hydrocarbon Liquids Recovery Optimization Over the Lifetime of a Deep-Water Oil Field
,”
Energy
,
181
, pp.
927
942
.
23.
Allahyarzadeh-Bidgoli
,
A.
,
Dezan
,
D. J.
,
Salviano
,
L. O.
,
de Oliveira Junior
,
S.
, and
Yanagihara
,
J. I.
,
2020
, “
Lifetime Sensitivity Analysis of FPSO Operating Parameters on Energy Consumption and Overall Oil Production in a Pre-Salt Oil Field
,”
Chem. Eng. Commun.
,
207
(
11
), pp.
1483
1507
.
24.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
61
(
6
), pp.
509
96
.
25.
Thermoflow Inc.
,
2020
,
Thermoflex Version 29
,
Thermoflow Inc.
,
FL
.
26.
Peng
,
D. Y.
, and
Robinson
,
D. B. A.
,
1976
, “
New Two-Constant Equation of State
,”
Ind. Eng. Chem. Res.
,
15
(
1
), pp.
59
64
.
27.
Kunz
,
O.
,
Wagner
,
W.
, and
The
,
G. E. R. G.
,
2008
, “
Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004
,”
J. Chem. Eng. Data
,
11
(
2012
), pp.
3032
3091
.
28.
Austgen
,
D. M.
,
Rochelle
,
G. T.
,
Peng
,
X.
, and
Chen
,
C. C.
,
1989
, “
Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems Using the Electrolyte-NRTL Equation
,”
Ind. Eng. Chem. Res.
,
28
(
7
), pp.
1060
1073
.
29.
Kotas
,
T. J.
,
1995
,
The Exergy Method of Thermal Plant Analysis
,
Krieger Publishing Company
,
FL
.
30.
Ricco
,
L.
,
Rigoni
,
E.
, and
Turco
,
A.
,
2013
, “
Smoothing Spline ANOVA for Variable Screening, Dolomites Research Notes on Approximation
,”
DRNA.
,
6
, pp.
130
139
.
31.
Pianosi
,
F.
, and
Wagener
,
T.
,
2015
, “
A Simple and Efficient Method for Global Sensitivity Analysis Based on Cumulative Distribution Functions
,”
Environ. Modell. Softw.
,
67
, pp.
1
11
.
32.
Malohlava
,
M.
, and
Candel
,
A.
,
2019
, “
Gradient Boosting Machine With H2O
,” http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html, Accessed May 13, 2019.
33.
Morris
,
M. D.
,
1992
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
(
2
), pp.
161
174
.
34.
Braddock
,
R. D.
, and
Schreider
,
S. Y.
,
2006
, “
Application of the Morris Algorithm for Sensitivity Analysis of the REALM Model for the Goulburn Irrigation System
,”
Environ. Model. Assess.
,
11
(
4
), pp.
297
313
.
35.
Campolongo
,
F.
,
Cariboni
,
J.
, and
Saltelli
,
A.
,
2006
, “
An Effective Screening Design for Sensitivity Analysis of Large Models
,”
Environ. Model. Soft.
,
22
(
10
), pp.
1509
1518
.
36.
Campolongo
,
F.
,
Cariboni
,
J.
, and
Saltelli
,
A.
,
2010
, “
From Screening to Quantitative Sensitivity Analysis. A Unified Approach
,”
Comput. Phys. Commun.
,
182
(
4
), pp.
978
988
.
37.
Allahyarzadeh-Bidgoli
,
A.
,
Dezan
,
D. J.
, and
Yanagihara
,
J. I.
,
2020
, “
COP Optimization of Propane Pre-Cooling Cycle by Optimal Fin Design of Heat Exchangers: Efficiency and Sustainability Improvement
,”
J. Clean. Prod.
,
271
, p.
122585
.
38.
Tobiesen
,
F. A.
,
Juliussen
,
O.
, and
Svendsen
,
H. F.
,
2008
, “
Experimental Validation of a Rigorous Desorber Model for Post-Combustion Capture
,”
Chem. Eng. Sci.
,
63
, pp.
2641
2656
.
39.
Galindo
,
P.
,
Schäffer
,
A.
,
Brechtel
,
K.
,
Unterberger
,
S.
, and
Scheffknecht
,
G.
,
2011
, “
Experimental Research on the Performance of CO2-Loaded Solutions of MEA and DEA at Regeneration Conditions
,”
Fuel
,
101
, pp.
2
8
.
40.
Akram
,
M.
,
Ali
,
U.
,
Best
,
T.
,
Blakey
,
S.
,
Finney
,
K. N.
, and
Pourkashanian
,
M.
,
2016
, “
Performance Evaluation of PACT Pilot-Plant for CO2 Capture From Gas Turbines With Exhaust Gas Recycle
,”
Int. J. Green. Gas Control
,
47
, pp.
137
150
.
41.
Garcia
,
M.
,
Hanna
,
K. K.
, and
Sai
,
G.
,
2017
, “
ASPEN PLUS Simulation Model for CO2 Removal With MEA: Validation of Desorption Model With Experimental Data
,”
J. Environ. Chem. Eng.
,
5
(
5
), pp.
4693
4701
.
42.
Aspen Technology Inc.
,
2017
,
Aspen HYSYS Version 10.1
,
Aspen Technology Inc.
,
MA
.
You do not currently have access to this content.