Abstract

The higher firing temperature reflects the higher efficiency of the gas turbine. However, using higher temperatures is limited as it may cause a rupture, bending, or failure of the turbine blades. Hence, the development of an effective internal cooling system of the gas turbine blade is essential. At the same time, it is necessary to ensure the lowest possible penalty on the thermodynamics performance cycle. Researchers are working over the years to find out the efficient cooling channel design with high transfer while the lowest pressure drop. They ran several cases both numerically and experimentally. This paper reviews the published research in the various methods of gas turbine internal cooling, such as using rib turbulators, dimples, jet impingement, pin fins, and guide vane, of the gas turbine blade.

References

1.
Xie
,
G.
,
Li
,
S.
,
Zhang
,
W.
, and
Sunden
,
B.
,
2013
, “
Computational Fluid Dynamics Modeling Flow Field and Side-Wall Heat Transfer in Rectangular Rib-Roughened Passages
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042001
.
2.
Kamal
,
A.
, and
Gollahalli
,
S. R.
,
2001
, “
Effects of Jet Reynolds Number on the Performance of Axisymmetric and Nonaxisymmetric Gas Burner Flames
,”
ASME J. Energy Resour. Technol.
,
123
(
2
), pp.
167
172
. 10.1115/1.1367858
3.
Harvey
,
S. P.
, and
Richter
,
H. J.
,
1994
, “
Gas Turbine Cycles With Solid Oxide Fuel Cells—Part II: A Detailed Study of a Gas Turbine Cycle With an Integrated Internal Reforming Solid Oxide Fuel Cell
,”
ASME J. Energy Resour. Technol.
,
116
(
4
), pp.
312
318
. 10.1115/1.2906459
4.
Abdel Rahman
,
A.
, and
Mokheimer
,
E.
,
2018
, “
Comparative Analysis of Different Inlet air Cooling Technologies, Including Solar Energy, to Boost Gas Turbine Combined Cycles in hot Regions
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112006
. 10.1115/1.4040195
5.
Khalil
,
A.
,
Kayed
,
H.
,
Hanafi
,
A.
,
Nemitallah
,
M.
, and
Habib
,
M.
,
2019
, “
Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042206
. 10.1115/1.4042824
6.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2016
, “
Cooling of Turbine Blade Surface With Expanded Exit Holes: Computational Suction-Side Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
051602
. 10.1115/1.4033590
7.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2017
, “
Cooling of Turbine Blades With Expanded Exit Holes: Computational Analyses of Leading Edge and Pressure-Side of a Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
051602
. 10.1115/1.4035829
8.
Masci
,
R.
, and
Sciubba
,
E.
,
2018
, “
A Lumped Thermodynamic Model of gas Turbine Blade Cooling: Prediction of First-Stage Blades Temperature and Cooling Flow Rates
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020901
. 10.1115/1.4038462
9.
Fransen
,
R.
,
2013
, “
LES Based Aerothermal Modeling of Turbine Blade Cooling Systems
,”
Doctoral dissertation
,
Institute National Polytechnique de Toulouse—INPT
.
10.
Amano
,
R. S.
,
Guntur
,
K.
,
Martinez Lucci
,
J.
, and
Ashitaka
,
Y.
,
2010
, “
Study of Flow Through a Stationary Ribbed Channel for Blade Cooling
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, pp.
471
478
.
11.
Kim
,
K. M.
,
Park
,
S. H.
,
Jeon
,
Y. H.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2007
, “
Heat/Mass Transfer Characteristics in Angled Ribbed Channels with Various Bleed Ratios and Rotation Numbers
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
, pp.
209
218
.
12.
Hahn
,
T.
,
Deakins
,
B.
,
Buechler
,
A.
,
Kumar
,
S.
, and
Amano
,
R. S.
,
2012
, “
Experimental Analysis of the Heat Transfer Variations Within an Internal Passage of a Typical Gas Turbine Blade Using Varied Internal Geometries
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
851
858
.
13.
Chen
,
W.
,
Ren
,
J.
, and
Jiang
,
H.
,
2011
, “
Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System
,”
ASME J. Turbomach.
,
133
(
4
), p.
041012
. 10.1115/1.4002989
14.
Kamat
,
H.
,
Shenoy
,
S. B.
, and
Kini
,
C. R.
,
2017
, “
Effect of V-Shaped Ribs on Internal Cooling of Gas Turbine Blades
,”
J. Eng. Technol. Sci.
,
49
(
4
), pp.
520
533
. 10.5614/j.eng.technol.sci.2017.49.4.7
15.
Wang
,
Z.
,
Ireland
,
P. T.
,
Kohler
,
S. T.
, and
Chew
,
J. W.
,
1998
, Heat Transfer Measurements to a Gas Turbine Cooling Passage With Inclined Ribs.
16.
Baggetta
,
L.
,
Satta
,
F.
, and
Tanda
,
G.
,
2019
, “
A Possible Strategy for the Performance Enhancement of Turbine Blade Internal Cooling With Inclined Ribs
,”
Heat Transfer Eng.
,
40
(
1–2
), pp.
184
192
. 10.1080/01457632.2017.1421305
17.
Wang
,
P.
,
Pu
,
J.
,
Yu
,
R. B.
,
Wang
,
J. H.
,
Wan
,
B.
,
Luo
,
J. X.
, and
Tian
,
S. Q.
,
2018
, “
An Experimental Investigation on Internal Flow Characteristics in a Realistic and Entire Coolant Channel with Ribs and Film Holes
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
.
18.
Han
,
J. C.
, and
Chen
,
H. C.
,
2006
, “
Turbine Blade Internal Cooling Passages With rib Turbulators
,”
J. Propul. Power
,
22
(
2
), pp.
226
248
. 10.2514/1.12793
19.
Kumar
,
S.
,
Amano
,
R. S.
, and
Lucci
,
J. M.
,
2013
, “
Numerical Simulations of Heat Transfer Distribution of a two-Pass Square Channel With V-Rib Turbulator and Bleed Holes
,”
Heat Mass Transfer
,
49
(
8
), pp.
1141
1158
. 10.1007/s00231-013-1156-5
20.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112001
. 10.1115/1.4043654
21.
Saravani
,
M. S.
,
Amano
,
R. S.
,
DiPasquale
,
N. J.
, and
Halmo
,
J. W.
,
2020
, “
Turning Guide Vane Effect on Internal Cooling of Two-Passage Channel with Parallel Ribs
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091303
. 10.1115/1.4046731
22.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
. 10.1115/1.1333694
23.
Shin
,
S.
,
Lee
,
K. S.
,
Park
,
S. D.
, and
Kwak
,
J. S.
,
2009
, “
Measurement of the Heat Transfer Coefficient in the Dimpled Channel: Effects of Dimple Arrangement and Channel Height
,”
J. Mech. Sci. Technol.
,
23
(
3
), pp.
624
630
. 10.1007/s12206-008-1211-1
24.
Choi
,
E. Y.
,
Choi
,
Y. D.
, and
Kwak
,
J. S.
,
2013
, “
Effect of Dimple Configuration on Heat Transfer Coefficient in a Rib-Dimpled Channel
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
653
659
. 10.2514/1.T4046
25.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Weigand
,
B.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels with Dimples of Different Shapes
,”
ASME J. Heat Transfer
,
137
(
3
), p.
031901
.
26.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
,
2005
, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
839
847
. 10.1115/1.1994880
27.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2020
, “
Study on Heat Transfer Enhancement of Gas Turbine Blades
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
91
106
.
28.
Keenan
,
M.
,
Amano
,
R. S.
, and
Ou
,
S.
,
2013
, “
Study of an Impingement Cooling jet Array for Turbine Blade Cooling with Single and Double Exit Cases
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
.
29.
Amano
,
R. S.
,
Keenan
,
M.
, and
Ou
,
S.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
R. S.
Amano
, and
B
Sunden
, eds.,
WIT Press
,
UK
, pp.
33
62
.
30.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Fox
,
M. D.
, and
Moon
,
H. K.
,
2015
, “
Crossflows From jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects
,”
Int. J. Therm. Sci.
,
88
, pp.
7
18
. 10.1016/j.ijthermalsci.2014.09.003
31.
Amano
,
R. S.
,
Nourin
,
F. N.
,
Salem
,
A. R. S.
, and
DiPasquale
,
N.
,
2019
, “
Investigation of Experimental Jet Array for Impinging Cooling of Blades
,”
AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
, p.
4240
.
32.
Salem
,
A.
,
Nourin
,
F.
,
Abousabae
,
M.
, and
Amano
,
R.S.
,
2020
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling with In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
.
33.
Levy
,
Y.
,
Rao
,
A. G.
,
Erenburg
,
V.
,
Sherbaum
,
V.
,
Gaissinski
,
I.
, and
Krapp
,
V.
,
2012
, “
Pressure Losses for Jet Array Impingement With Crossflow
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
, pp.
139
149
.
34.
Marzec
,
K.
, and
Kucaba-Pietal
,
A.
,
2014
, “
Heat Transfer Characteristic of an Impingement Cooling System With Different Nozzle Geometry
,”
Journal of Physics: Conference Series
,
Krakow, Poland
,
June 15–18
, IOP Publishing, p.
012038
.
35.
Yang
,
L.
,
Tyagi
,
K.
,
Ekkad
,
S.
, and
Ren
,
J.
,
2015
, “
Influence of Rotation on Heat Transfer in a Two-Pass Channel With Impingement Under High Reynolds Number
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
.
36.
Brigham
,
B. A.
, and
VanFossen
,
G. J.
,
1984
, “
Length to Diameter Ratio and Row Number Effects in Short pin fin Heat Transfer
,”
ASME J. Gas Turbines Power
,
106
(
1
), pp.
241
245
. 10.1115/1.3239541
37.
Sahiti
,
N.
,
Lemouedda
,
A.
,
Stojkovic
,
D.
,
Durst
,
F.
, and
Franz
,
E.
,
2006
, “
Performance Comparison of pin fin in-Duct Flow Arrays With Various pin Cross-Sections
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1176
1192
. 10.1016/j.applthermaleng.2005.10.042
38.
Rao
,
Y.
,
Xu
,
Y.
, and
Wan
,
C.
,
2012
, “
An Experimental and Numerical Study of Flow and Heat Transfer in Channels With Pin Fin-Dimple and pin fin Arrays
,”
Exp. Therm. Fluid. Sci.
,
38
, pp.
237
247
. 10.1016/j.expthermflusci.2011.12.012
39.
Shevchenko
,
I.
,
Kindra
,
V.
, and
Bychkov
,
N.
,
2018
, “
A Numerical Study of Heat and Mass Transfer in a Narrowing Channel With Pin Fin-Dimple Arrays
,”
2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)
,
Vladivostok, Russia
,
Oct. 3–4
, IEEE, pp.
1
4
.
40.
Su
,
Y.
,
Liu
,
Z.
, and
Jiang
,
F.
,
2011
, “
Entropy Generation of Staggered Short pin fin Arrays
,”
2011 International Conference on Remote Sensing, Environment and Transportation Engineering
,
Nanjing, China
,
June 24–26
, IEEE, pp.
300
303
.
You do not currently have access to this content.