Abstract

Variable valve timing (VVT) and variable valve lift (VVL) are two promising methods for improving gasoline engine performance. VVL improves part-load performance, and VVT reduces low-speed fuel consumption. Automobile industries and researchers have developed several mechanical, hydraulic, and electronic devices to implement these variable valve functions in engines. In this study, a control strategy is developed for a new compact and low-energy-consumption magneto-rheological valve train (MRVT) to effectively accomplish the variable valve functions and achieve superior engine performance. A non-throttle single-cylinder spark-ignition (SI) engine dynamic model is established to simulate the engine performance by using the flexibility of this new valve train. A six-mode strategy using VVT and VVL is proposed under different engine running conditions of speed and load. Dynamic simulations were conducted for investigating the six-mode strategy based engine performance. The results indicate that the combination of VVT and VVL in the corresponding engine mode can effectively give about 15–20% improvement in the brake fuel efficiency during low and medium speeds. Moreover, by using VVL, about 10–14% improvement in brake specific fuel consumption can be achieved at part-load conditions. According to this computational investigation, the overall engine efficiency and performance can be improved significantly by using a controllable magneto-rheological valve and strategically changing the engine VVL and VVT.

References

1.
Alkidas
,
A. C.
,
2007
, “
Combustion Advancements in Gasoline Engines
,”
Energy Convers. Manage.
,
48
(
11
), pp.
2751
2761
. 10.1016/j.enconman.2007.07.027
2.
Yue
,
Z.
,
Edwards
,
K. D.
,
Sluders
,
C. S.
, and
Som
,
S.
,
2019
, “
Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102201
. 10.1115/1.4043393
3.
Kutlar
,
O. A.
,
Arslan
,
H.
, and
Calik
,
A. T.
,
2005
, “
Methods to Improve Efficiency of Four Stroke Spark- Ignition Engines at Part Load
,”
Energy Convers. Manage.
,
46
(
20
), pp.
3202
3220
. 10.1016/j.enconman.2005.03.008
4.
Flierl
,
R.
, and
Klüting
,
M.
,
2000
, “
The Third Generation of Valvetrains—New Fully Variable Valvetrains for Throttle-Free Load Control
,”
SAE 2000 World Congress
,
Detroit, MI
,
Mar. 6
.
5.
Hosaka
,
T.
, and
Hamazaki
,
M.
,
1991
, “
Development of the Variable Valve Timing and Lift (VTEC) Engine for Honda NSX
,”
Autotechnologies Conference
,
Detroit, MI
,
Jan. 1
.
6.
Brustle
,
C.
, and
Schwarzentha
,
D.
,
2001
, “
VarioCam Plus—A Highlight of the Porsche 911 Turbo Engine
,”
SAE 2001 World Congress
,
Detroit, MI
,
Mar. 5
.
7.
Sher
,
E.
, and
Bar-Kohany
,
T.
,
2002
, “
Optimization of Variable Valve Timing for Maximizing Performance of an Unthrottled SI Engine—A Theoretical Study
,”
Energy
,
27
(
8
), pp.
757
775
. 10.1016/S0360-5442(02)00022-1
8.
Shiao
,
Y.
, and
Dat
,
L. V.
,
2012
, “
Efficiency Improvement for an Unthrottled SI Engine at Part Load
,”
Int. J. Automot. Technol.
,
13
(
6
), pp.
885
893
. 10.1007/s12239-012-0089-1
9.
Rajput
,
O.
,
Ra
,
Y.
,
Ha
,
K. P.
, and
Son
,
Y. S.
,
2018
, “
Numerical Analysis of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion With Continuously Variable Valve Duration (CVVD) Control
,”
ASME 2018 Internal Combustion Engine Division Fall Technical Conference
,
San Diego, CA
,
Nov. 4–7
, p. V001T03A008.
10.
Wun
,
G. R.
,
Chuang
,
C. T.
,
Syu
,
Y. F.
,
Wang
,
C. S.
, and
Wu
,
Y. Y.
,
2016
, “
Development of Hydraulic-Controlled Variable Valve Lift System for Scooter Engine
,”
SAE Int. J. Engines
,
9
(
4
), pp.
2493
2497
. 10.4271/2016-32-0095
11.
Fernandez
,
H.
,
Kazour
,
Y.
,
Knauf
,
M.
,
Sinnamon
,
J.
,
Suh
,
E.
, and
Glueck
,
D.
,
2012
, “
Development of Continuously Variable Valve Lift Mechanism for Improved Fuel Economy
,”
SAE 2012 World Congress & Exhibition
,
Detroit, MI
,
April
.
12.
Flierl
,
R.
, and
Gollasch
,
D.
,
2006
, “
Improvements to a Four-Cylinder Gasoline Engine Through the Fully Variable Valve Lift and Timing System UniValve®
,”
SAE 2006 World Congress & Exhibition
,
Detroit, MI
,
Apr. 3
.
13.
Khan
,
S. A.
, and
Ayyappath
,
P.
,
2014
, “
Design and Development of Variable Valve Timing and Lift Mechanism for Improving the Performance of Single Cylinder Two Wheeler Gasoline Engine
,”
SAE 2014 World Congress & Exhibition
,
Detroit, MI
,
April
.
14.
Bernard
,
L.
,
Ferrari
,
A.
,
Micelli
,
D.
,
Perpttp
,
A.
,
Rinolfi
,
R.
, and
Vattaneo
,
F.
,
2009
, “
Electro-Hydraulic Valve Control With MultiAir Technology
,”
MTZ Worldwide
,
70
(
12
), pp.
4
10
. 10.1007/BF03226988
15.
Lu
,
Y.
,
Li
,
J.
,
Xiong
,
L.
, and
Li
,
B.
,
2020
, “
Simulation and Experimental Study of a Diesel Engine Based on an Electro-Hydraulic FVVA System Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032204
. 10.1115/1.4044561
16.
Shiao
,
Y.
,
Kantipudi
,
M. B.
, and
Yang
,
T. H.
,
2019
, “
Performance Estimation of an Engine With Magnetorheological Variable Valve Train
,”
Adv. Mech. Eng.
,
11
(
5
), pp.
1
11
. 10.1177/1687814019847795
17.
Shiao
,
Y.
,
Kantipudi
,
M. B.
, and
Jiang
,
J. W.
,
2019
, “
Novel Spring-Buffered Variable Valve Train for an Engine Using Magneto-Rheological Fluid Technology
,”
Front. Mater.
,
6
, p.
95
. 10.3389/fmats.2019.00095
18.
Hong
,
H.
,
Parvate-Patil
,
G. B.
, and
Gordon
,
B.
,
2004
, “
Review and Analysis of Variable Valve Timing Strategies—Eight Ways to Approach
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
218
(
10
), pp.
1179
1200
. 10.1177/095440700421801013
19.
Rajput
,
O.
,
Ra
,
Y.
,
K.
,
P.
, and
Son
,
Y.S.
,
2018
, “
Numerical Analysis of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion With Continuously Variable Valve Duration (CVVD) Control
,”
Proceedings of the ASME 2018 Internal Combustion Engine Division Fall Technical Conference
,
San Diego, CA
,
Nov. 4–7
.
20.
Wang
,
T.
,
Liu
,
D.
,
Wang
,
G.
,
Tan
,
B.
, and
Peng
,
Z.
,
2015
, “
Effects of Variable Valve Lift on In-Cylinder Air Motion
,”
Energies
,
8
(
12
), pp.
13778
13795
. 10.3390/en81212397
21.
Li
,
Q.
,
Liu
,
J.
,
Fu
,
J.
,
Zhou
,
X.
, and
Liao
,
C.
,
2018
, “
Comparative Study on the Pumping Losses Between Continuous Variable Valve Lift (CVVL) Engine and Variable Valve Timing (VVT) Engine
,”
Appl. Therm. Eng.
,
137
, pp.
710
720
. 10.1016/j.applthermaleng.2018.04.017
22.
Cleary
,
D.
, and
Silvas
,
G.
,
2007
, “
Unthrottled Engine Operation With Variable Intake Valve Lift, Duration, and Timing
,”
SAE World Congress & Exhibition
,
Detroit, MI
,
Apr. 16–19
.
23.
Shiao
,
Y.
, and
Cheng
,
W.-H.
,
2016
, “
Performance Investigation of an SI Engine With Variable Valve Timing and Lift Based on Magneto-Rheological Valve
,”
Trans. Can. Soc. Mech. Eng.
,
40
(
5
), pp.
749
760
. 10.1139/tcsme-2016-0061
24.
Lord Corp
.
,
2008
, “
Datasheet of MRF-140CG
,” http://www.lordfulfillment.com/upload/DS7012.pdf.
25.
Katsumata
,
M.
,
Kuroda
,
Y.
, and
Ohata
,
A.
,
2007
, “
Development of an Engine Torque Estimation Model: Integration of Physical and Statistical Combustion Model
,”
SAE World Congress & Exhibition
,
Detroit, MI
,
Apr. 16
.
26.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
Mc Graw-Hill Book Co.
,
New York
.
27.
Huang
,
Q.
,
Chung
,
C.
,
Syu
,
Y.
,
Wu
,
Y.
, and
Li
,
C.
,
2016
, “
Research on Applying Butanol-Gasoline Blend Fuel on Scooter Engine
,”
SAE/JSAE 2016 Small Engine Technology Conference & Exhibition
,
South Carolina
,
November
.
28.
Wu
,
Y. Y.
,
Chen
,
B.
,
Shiao
,
Y.
, and
Hsieh
,
F.
,
2003
, “
Engine Modeling With Inlet and Exhaust Wave Action for Real Time Control
,”
ASME International Mechanical Engineering Congress and Exposition
,
Washington, DC
,
Nov. 15–21
, Vol.
37130
.
You do not currently have access to this content.