Abstract

Hypergolic bipropellant of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) is extensively used in spacecraft propulsion applications and rocket engines. But studies on the chemical kinetic mechanism of MMH/NTO are limited. So, in this study by integrating the submechanisms of MMH decomposition, NTO thermal decomposition, MMH/NTO and intermediates, and small hydrocarbons, the comprehensive chemical mechanism of MMH/NTO bipropellant is proposed. The present chemical mechanism consists of 72 species and 406 elementary reactions. In two respects of ignition delay times and combustion flame temperatures, the present model has been validated against the theoretical calculation results and also compared with other kinetic models in the literature. The validations show that the predicted ignition delay times by the present kinetic model are highly consistent with the theoretical data and well describe the pressure-dependent characteristic. For combustion flame temperature, the present model also exhibits better predictions to the theoretical calculation results, which are also the same as the predictions by the MMH-RFNA model. Furthermore, the influences of initial temperature, chamber pressure, and NTO/HHM mass ratio (O/F) on the ignition delay time and combustion flame temperature are investigated. The auto-ignition behavior of MMH/NTO propellant is sensitive to initial temperature and chamber pressure, and the combustion flame temperature is more sensitive to the O/F. This study provides a detail chemical kinetics model for further mechanism simplification and combustion numerical simulation.

References

1.
Liu
,
Y.
,
Zybin
,
S. V.
,
Guo
,
J.
,
van Duin
,
A. C. T.
, and
Goddard
,
W. A.
,
2012
, “
Reactive Dynamics Study of Hypergolic Bipropellants: Monomethylhydrazine and Dinitrogen Tetroxide
,”
J. Phys. Chem. B
,
116
(
48
), pp.
14136
14145
. 10.1021/jp308351g
2.
Hou
,
L. Y.
,
Fu
,
P. F.
, and
Ba
,
Y. T.
,
2019
, “
Chemical Mechanism of MMH/NTO and Simulation in a Small Liquid Rocket Engine
,”
Combust. Sci. Technol.
,
191
(
12
), pp.
2208
2225
. 10.1080/00102202.2018.1551214
3.
Lee
,
K. H.
,
2019
, “
Numerical Simulation on Thermal and Mass Diffusion of MMH-NTO Bipropellant Thruster Plume Flow Using Global Kinetic Reaction Model
,”
Aerosp. Sci. Technol.
,
93
, p.
104882
. 10.1016/j.ast.2018.11.056
4.
Som
,
S.
,
Longman
,
D. E.
,
Luo
,
Z. Y.
,
Plomer
,
M.
,
Lu
,
T. F.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2012
, “
Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032204
. 10.1115/1.4007216
5.
Tani
,
H.
,
Daimon
,
Y.
,
Sasaki
,
M.
, and
Matsuura
,
Y.
,
2017
, “
Atomization and Hypergolic Reactions of Impinging Streams of Monomethylhydrazine and Dinitrogen Tetroxide
,”
Combust. Flame
,
185
, pp.
142
151
. 10.1016/j.combustflame.2017.07.005
6.
Catoire
,
L.
,
Chaumeix
,
N.
, and
Paillard
,
C.
,
2004
, “
Chemical Kinetic Model for Monomethylhydrazine/Nitrogen Tetroxide Gas Phase Combustion and Hypergolic Ignition
,”
J. Propul. Power
,
20
(
1
), pp.
87
92
. 10.2514/1.9234
7.
Catoire
,
L.
,
Ludwig
,
T.
,
Dupré
,
G.
, and
Paillard
,
C.
,
1998
, “
Kinetic Modelling of the Ignition Delays in Monomethylhydrazine/Hydrogen/Oxygen/Argon Gaseous Mixtures. Proceedings of the Institution of Mechanical Engineers
,”
Part G: J. Aerospace Eng.
,
212
(
6
), pp.
393
406
. 10.1243/0954410981532360
8.
Yan-Tao
,
B.
,
Ling-Yun
,
H.
,
Xiao-Fang
,
M.
, and
Feng-Shan
,
W.
,
2014
, “
Construction and Analysis of a Chemical Kinetic Model for Monomethylhydrazine/Nitrogen Tetroxide Reactions
,”
Acta Phys. -Chim. Sin.
,
30
(
6
), pp.
1042
1048
. 10.3866/PKU.WHXB201404093
9.
Da-rui
,
W.
,
Sheng-qing
,
C.
, and
Nan
,
Z.
,
2015
, “
Simplification for Chemical Reaction Mechanism of Liquid Attitude and Orbit Control Engine by PP Method
,”
J. Rocket Propul.
,
41
(
5
), pp.
61
66
.
10.
Catoire
,
L.
, and
Swihart
,
M. T.
,
2002
, “
Thermochemistry of Species Produced From Monomethylhydrazine in Propulsion and Space-Related Applications
,”
J. Propul. Power
,
18
(
6
), pp.
1242
1253
. 10.2514/2.6059
11.
Sun
,
H.
, and
Law
,
C. K.
,
2007
, “
Thermochemical and Kinetic Analysis of the Thermal Decomposition of Monomethylhydrazine: An Elementary Reaction Mechanism
,”
J. Phys. Chem. A
,
111
(
19
), pp.
3748
3760
. 10.1021/jp067591l
12.
Sun
,
H.
,
Catoire
,
L.
, and
Law
,
C. K.
,
2009
, “
Thermal Decomposition of Monomethylhydrazine: Shock Tube Experiments and Kinetic Modeling
,”
Int. J. Chem. Kinet.
,
41
(
3
), pp.
176
186
. 10.1002/kin.20381
13.
Liu
,
W.-G.
,
Wang
,
S.
,
Dasgupta
,
S.
,
Thynell
,
S. T.
,
Goddard
,
W. A.
,
Zybin
,
S.
, and
Yetter
,
R. A.
,
2013
, “
Experimental and Quantum Mechanics Investigations of Early Reactions of Monomethylhydrazine with Mixtures of NO2 and N2O4
,”
Combust. Flame
,
160
(
5
), pp.
970
981
. 10.1016/j.combustflame.2013.01.012
14.
Kanno
,
N.
,
Terashima
,
H.
,
Daimon
,
Y. U.
,
Yoshikawa
,
N.
, and
Koshi
,
M.
,
2014
, “
Theoretical Study of the Rate Coefficients for CH3NHNH2 + NO2 and Related Reactions
,”
Int. J. Chem. Kinet.
,
46
(
8
), pp.
489
499
. 10.1002/kin.20866
15.
Kanno
,
N.
,
Tani
,
H.
,
Daimon
,
Y.
,
Terashima
,
H.
,
Yoshikawa
,
N.
, and
Koshi
,
M.
,
2015
, “
Computational Study of the Rate Coefficients for the Reactions of NO2 with CH3NHNH, CH3NNH2, and CH2NHNH2
,”
J. Phys. Chem. A
,
119
(
28
), pp.
7659
7667
. 10.1021/acs.jpca.5b00987
16.
Anderson
,
W.
,
McQuaid
,
M.
,
Nusca
,
M.
,
Kotlar
,
A.
, and
Detailed
,
A.
Finite-Rate, Chemical Kinetics Mechanism for Monomethylhydrazine-Red Fuming Nitric Acid Systems
. https://www.researchgate.net/publication/235177255_A_Detailed_Finite-Rate_Chemical_Kinetics_Mechanism_for_Monomethylhydrazine-Red_Fuming_Nitric_Acid_Systems,
2010
:
36
.
17.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
, and
Hanson
,
R. K.
GRI-mech release 3.0
. http://www.me.berkeley.edu/gri_mech/
18.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1 − C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
(
10
), pp.
638
675
. 10.1002/kin.20802
19.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
. http://ignis.usc.edu/USC_Mech_II.htm,
May
2007
.
20.
Zeng
,
Q.
,
Zeng
,
D.
, and
Zheng
,
D.
,
2020
, “
Characteristics and Kinetic Analysis of Ignition for Different Gasoline Surrogate Fuel Models
,”
ASME J. Energy Resour. Technol.
,
142
(8), p.
082302
. 10.1115/1.4046276
21.
Alzahrani
,
F. M.
,
Sanusi
,
Y. S.
,
Vogiatzaki
,
K.
,
Ghoniem
,
A. F.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M. A.
,
2015
, “
Evaluation of the Accuracy of Selected Syngas Chemical Mechanisms
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042201
. 10.1115/1.4029860
22.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Meeks
,
E.
,
CHEMKIN-III
,
Sandia National Laboratories Livermore, CA
.
23.
Agosta
,
V. D.
,
Seamans
,
T. F.
, and
Vanpee
,
M.
,
1967
, “
Development of a Fundamental Model of Hypergolic Ignition in Space-Ambient Engines
,”
AIAA J.
,
5
(
9
), pp.
1616
1624
. 10.2514/3.4259
You do not currently have access to this content.