Abstract

Hybrid Brayton concentrated solar power (CSP) plants have been gaining attention in the last decade upon many advantages regarding the use of traditional generation technologies combined with renewable energy sources. However, some technical and economic issues must be solved to allow its widespread use. Research and development efforts are deemed essential to the study of factors that constrain cycle performance looking to increase its efficiency, reducing fuel consumption, and decreasing emissions. This study presents the performance evaluation of a hybrid multi-stage CSP plant considering specific environmental conditions to attain the factor that constrains its optimal performance. Overall energy and exergy plant efficiencies are analyzed, considering an arbitrary number of stages. For instance, a double compression expansion hybrid CSP plant shows the overall energy efficiency of 32% larger, a 30% higher exergy efficiency, and a fuel conversion rate around 18% larger when compared with a single-stage CSP plant.

References

1.
IEA
,
2019
, “
World Energy Outlook 2019
,”
International Energy Agency
,
Paris, France
,
Technical Report No. WEO-2019
.
2.
Ding
,
L.
,
Akbarzadeh
,
A.
,
Singh
,
B.
, and
Remeli
,
M.
,
2017
, “
Feasibility of Electrical Power Generation Using Thermoelectric Modules Via Solar Pond Heat Extraction
,”
Energy. Convers. Manage.
,
135
, pp.
74
83
. 10.1016/j.enconman.2016.12.069
3.
Elsayed
,
I.
, and
Nishi
,
Y.
,
2018
, “
A Feasibility Study on Power Generation From Solar Thermal Wind Tower: Inclusive Impact Assessment Concerning Environmental and Economic Costs
,”
Energies
,
11
(
11
), p.
3181
. 10.3390/en11113181
4.
Kirmani
,
S.
,
Jamil
,
M.
, and
Akhtar
,
I.
,
2018
, “
Economic Feasibility of Hybrid Energy Generation With Reduced Carbon Emission
,”
IET Ren. Power Gen.
,
12
(
8
), pp.
934
942
. 10.1049/iet-rpg.2017.0288
5.
Taylor
,
N.
,
2019
, “Solar Thermal Electricity: Technology Development Report,”
Technical Report, EUR 29913 EN
,
Publications Office of the European Union
,
Luxembourg
.
6.
Bouhal
,
T.
,
Agrouaz
,
Y.
,
Kousksou
,
T.
,
Allouhi
,
A.
, and
Bakkas
,
M.
,
2018
, “
Technical Feasibility of a Sustainable Concentrated Solar Power in Morocco Through an Energy Analysis
,”
Renewable. Sustainable. Energy. Rev.
,
81
, pp.
1087
1095
. 10.1016/j.rser.2017.08.056
7.
Rafique
,
M. M.
, and
Bahaidarah
,
H. M. S.
,
2019
, “
Thermo-Economic and Environmental Feasibility of a Solar Power Plant as a Renewable and Green Source of Electrification
,”
Int. J. Green Energy
,
16
(
15
), pp.
1577
1590
. 10.1080/15435075.2019.1677237
8.
Jacobson
,
M. Z.
, and
Delucchi
,
M. A.
,
2011
, “
Providing All Global Energy With Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials
,”
Energy Policy
,
39
(
3
), pp.
1154
1169
. 10.1016/j.enpol.2010.11.040
9.
Santos
,
M.
,
Miguel-Barbero
,
C.
,
Merchán
,
R.
,
Medina
,
A.
, and
Hernández
,
A. C.
,
2018
, “
Roads to Improve the Performance of Hybrid Thermosolar Gas Turbine Power Plants: Working Fluids and Multi-Stage Configurations
,”
Energy Convers Manage
,
165
, pp.
578
592
. 10.1016/j.enconman.2018.03.084
10.
Suresh
,
N.
,
Thirumalai
,
N.
, and
Dasappa
,
S.
,
2019
, “
Modeling and Analysis of Solar Thermal and Biomass Hybrid Power Plants
,”
Appl. Therm. Eng.
,
160
, p.
114121
. 10.1016/j.applthermaleng.2019.114121
11.
Costa
,
S.-C.
,
Mahkamov
,
K.
,
Kenisarin
,
M.
,
Ismail
,
M.
,
Lynn
,
K.
,
Halimic
,
E.
, and
Mullen
,
D.
,
2019
, “
Solar Salt Latent Heat Thermal Storage for a Small Solar Organic Rankine Cycle Plant
,”
ASME J. Energy. Res. Technol.
,
142
(
3
), p.
031203
. https://doi.org/10.1115/1.4044557
12.
Korzynietz
,
R.
,
Brioso
,
J.
,
Gallas
,
M.
,
Uhlig
,
R.
,
Ebert
,
M.
,
Buck
,
R.
, and
Teraji
,
D.
,
2016
, “
Solugas—Comprehensive Analysis of the Solar Hybrid Brayton Plant
,”
Sol. Energy
,
135
, pp.
578
589
. 10.1016/j.solener.2016.06.020
13.
Elmohlawy
,
A. E.
,
Ochkov
,
V. F.
, and
Kazandzhan
,
B. I.
,
2019
, “
Thermal Performance Analysis of a Concentrated Solar Power System (CSP) Integrated With Natural Gas Combined Cycle (NGCC) Power Plant
,”
Case Studies Thermal Eng.
,
14
, p.
100458
. 10.1016/j.csite.2019.100458
14.
Jouhara
,
H.
,
Żabnieńska Gra
,
A.
,
Khordehgah
,
N.
,
Ahmad
,
D.
, and
Lipinski
,
T.
,
2020
, “
Latent Thermal Energy Storage Technologies and Applications: A Review
,”
Int. J. Thermofluids
,
4–5
, p.
100039
. 10.1016/j.ijft.2020.100039
15.
Bernardos
,
E.
,
López
,
I.
,
Rodríguez
,
J.
, and
Abánades
,
A.
,
2013
, “
Assessing the Potential of Hybrid Fossil–Solar Thermal Plants for Energy Policy Making: Brayton Cycles
,”
Energy Policy
,
62
, pp.
99
106
. 10.1016/j.enpol.2013.08.002
16.
Fang
,
L.
,
Li
,
Y.
,
Yang
,
X.
, and
Yang
,
Z.
,
2019
, “
Analyses of Thermal Performance of Solar Power Tower Station Based on a Supercritical CO2 Brayton Cycle
,”
ASME J. Energy. Res. Technol.
,
142
(
3
), p.
031301
. 10.1115/1.4045083
17.
Ferraro
,
V.
,
Imineo
,
F.
, and
Marinelli
,
V.
,
2013
, “
An Improved Model to Evaluate Thermodynamic Solar Plants With Cylindrical Parabolic Collectors and Air Turbine Engines in Open Joule–brayton Cycle
,”
Energy
,
53
, pp.
323
331
. 10.1016/j.energy.2013.02.051
18.
Moreno-Gamboa
,
F.
,
Escudero-Atehortua
,
A.
, and
Nieto-Londoño
,
C.
,
2020
, “
Performance Evaluation of External Fired Hybrid Solar Gas-Turbine Power Plant in Colombia Using Energy and Exergy Methods
,”
Ther. Sci. Eng. Prog.
,
20
, p.
100679
. 10.1016/j.tsep.2020.100679
19.
Olivenza-León
,
D.
,
Medina
,
A.
, and
Calvo Hernández
,
A.
,
2015
, “
Thermodynamic Modeling of a Hybrid Solar Gas-Turbine Power Plant
,”
Energy Convers. Manage.
,
93
, pp.
435
447
. 10.1016/j.enconman.2015.01.027
20.
Behar
,
O.
,
2018
, “
Solar Thermal Power Plants—A Review of Configurations and Performance Comparison
,”
Renewable. Sustainable. Energy. Rev.
,
92
, pp.
608
627
. 10.1016/j.rser.2018.04.102
21.
Merchán
,
R.
,
Santos
,
M.
,
Heras
,
I.
,
Gonzalez-Ayala
,
J.
,
Medina
,
A.
, and
Hernández
,
A. C.
,
2020
, “
On-Design Pre-optimization and Off-Design Analysis of Hybrid Brayton Thermosolar Tower Power Plants for Different Fluids and Plant Configurations
,”
Renewable Sustainable Energy Rev.
,
119
, p.
109590
. 10.1016/j.rser.2019.109590
22.
Gueymard
,
C.
,
2000
, “
Prediction and Performance Assessment of Mean Hourly Global Radiation
,”
Sol. Energy
,
68
(
3
), pp.
285
303
. 10.1016/S0038-092X(99)00070-5
23.
Liu
,
B. Y.
, and
Jordan
,
R. C.
,
1960
, “
The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation
,”
Sol. Energy
,
4
(
3
), pp.
1
19
. 10.1016/0038-092X(60)90062-1
24.
National Aeronautics and Space Administration
,
2018
, “
Power Data Access Viewer
,” https://power.larc.nasa.gov/data-access-viewer/, Accessed April 1, 2019.
25.
MeteoSevilla
,
2017
, “
Estación Meteorológica de Santiponce
,”
Sevilla
,
Spain
, http://www.meteosevilla.com/inicio.htm, Accessed June 25, 2017.
26.
Ramírez-Cerpa
,
E.
,
Acosta-Coll
,
M.
, and
Vélez-Zapata
,
J.
,
2017
, “
Análisis De Condiciones Climatológicas De Precipitaciones De Corto Plazo En Zonas Urbanas: Caso De Estudio Barranquilla, Colombia
,”
Idesia (Arica)
,
35
, pp.
87
94
. https://doi.org/10.4067/s0718-34292017005000023
27.
Sánchez-Orgaz
,
S.
,
2012
, “
Modelización, Análisis Y Optimización Termodinámica De Plantas De Potencia Multietapa Tipo Brayton. Aplicación a Centrales Termosolares
,”
Ph.D. thesis
,
Universidad de Salamanca
,
Spain
.
28.
Santos
,
M.
,
Merchán
,
R.
,
Medina
,
A.
, and
Calvo Hernández
,
A.
,
2016
, “
Seasonal Thermodynamic Prediction of the Performance of a Hybrid Solar Gas-Turbine Power Plant
,”
Energy Convers. Manage.
,
115
, pp.
89
102
. 10.1016/j.enconman.2016.02.019
29.
Aljundi
,
I. H.
,
2009
, “
Energy and Exergy Analysis of a Steam Power Plant in Jordan
,”
Appl. Therm. Eng.
,
29
(
2
), pp.
324
328
. 10.1016/j.applthermaleng.2008.02.029
30.
Yue
,
T.
, and
Lior
,
N.
,
2018
, “
Thermal Hybrid Power Systems Using Multiple Heat Sources of Different Temperature: Thermodynamic Analysis for Brayton Cycles
,”
Energy
,
165
, pp.
639
665
. 10.1016/j.energy.2018.09.099
31.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(
6
), pp.
469
488
. 10.1016/S0038-092X(03)00226-3
32.
Atif
,
M.
, and
Al-Sulaiman
,
F. A.
,
2017
, “
Energy and Exergy Analyses of Solar Tower Power Plant Driven Supercritical Carbon Dioxide Recompression Cycles for Six Different Locations
.”
33.
Romier
,
A.
,
2004
, “
Small Gas Turbine Technology
,”
Appl. Therm. Eng.
,
24
(
11
), pp.
1709
1723
,
Industrial Gas Turbine Technologies
. 10.1016/j.applthermaleng.2003.10.034
34.
Santos
,
M.
,
Merchán
,
R.
,
Medina
,
A.
, and
Hernández
,
A. C.
,
2016
, “
Seasonal Thermodynamic Prediction of the Performance of a Hybrid Solar Gas-Turbine Power Plant
,”
Energy Convers. Manage.
,
115
, pp.
89
102
. 10.1016/j.enconman.2016.02.019
You do not currently have access to this content.