Abstract

Submerged impingement jets are widely used in erosion/corrosion experiments as it is easy to control jet standoff distance, jet angle, and flow velocities in experiments. In addition to experiments, typically computational fluid dynamics (CFD) technique has been used to simulate slurry flow in this geometry to investigate erosion process and develop erosion models or equations. The traditional CFD simulations of erosion in this geometry use the Reynolds-averaged Navier–Stokes (RANS) equations with turbulence models. By using this technique, time-averaged fluid flow is revealed, and thus, time-averaged erosion rate can be obtained by tracking particles in the fluid flow field. However, this seemingly simple flow displays unsteady flow structures in the stagnation zone of the flow field and its effects on the erosion process were previously unclear. In this study, large eddy simulation (LES) is used to simulate unsteady fluid flow in different impingement jets in an Eulerian scheme. Then, transient particle tracking is performed in a Lagrangian scheme. Particles are injected randomly at the inlet plane and tracked to simulate unsteady erosion that occurs on the target surface. Finally, an erosion equation is used to calculate solid particle erosion rates. The LES Eulerian–Lagrangian erosion modeling is further validated by available experimental data for fluid velocities and an erosion profile. The results show that the accuracy of erosion prediction of small particles is improved significantly by using the LES method. In addition, the unsteady particle motion and erosion process can be revealed by using this method.

References

1.
Zhang
,
Y.
,
Reuterfors
,
E.
,
McLaury
,
B. S.
,
Shirazi
,
S.
, and
Rybicki
,
E.
,
2007
, “
Comparison of Computed and Measured Particle Velocities and Erosion in Water and air Flows
,”
Wear
,
263
(
1–6
), pp.
330
338
. 10.1016/j.wear.2006.12.048
2.
Okita
,
R.
,
Zhang
,
Y.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2012
, “
Experimental and Computational Investigations to Evaluate the Effects of Fluid Viscosity and Particle Size on Erosion Damage
,”
ASME J. Fluid. Eng.
,
134
(
6
), p.
061301
. 10.1115/1.4005683
3.
Mansouri
,
A.
,
Arabnejad
,
H.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2015
, “
A Combined CFD/Experimental Methodology for Erosion Prediction
,”
Wear
,
332–333
, pp.
1090
1097
. 10.1016/j.wear.2014.11.025
4.
Zhang
,
J.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2018
, “
Application and Experimental Validation of a CFD Based Erosion Prediction Procedure for jet Impingement Geometry
,”
Wear
,
394–395
, pp.
11
19
. 10.1016/j.wear.2017.10.001
5.
Karimi
,
S.
,
Zhang
,
J.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
, “
Evaluation of the Effect of Particle Size on Erosion Calculations Utilizing CFD and Comparison With Submerged Slurry Jet Experiments
,”
Proceedings of the ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference
, p.
V005T05A026
.
6.
Karimi
,
S.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2017
, “
Predicting Fine Particle Erosion Utilizing Computational Fluid Dynamics
,”
Wear
,
376–377
, pp.
1130
1137
. 10.1016/j.wear.2016.11.022
7.
Zhu
,
H.
,
Zhang
,
J.
,
Zhu
,
J.
,
Rutter
,
R.
, and
Zhang
,
H.-Q.
, “
A Numerical Study of Turbulence Model and Rebound Model Effect on Erosion Simulations in an Electrical Submersible Pump (ESP)
,”
Proceedings of the ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference
, p.
V03BT03A041
.
8.
Zhu
,
H.
,
Zhu
,
J.
,
Rutter
,
R.
, and
Zhang
,
H.-Q.
,
2019
, “
A Numerical Study on Erosion Model Selection and Effect of Pump Type and Sand Characters in Electrical Submersible Pumps by Sandy Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122004
. 10.1115/1.4044941
9.
Wang
,
Q.
,
Huang
,
Q.
,
Sun
,
X.
,
Zhang
,
J.
,
Karimi
,
S.
, and
Shirazi
,
S. A.
,
2021
, “
Experimental and Numerical Evaluation of the Effect of Particle Size on Slurry Erosion Prediction
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073101
. 10.1115/1.4049417
10.
Karimi
,
S.
,
2018
,
Experimental Modeling and CFD Studies of Fine Particle Erosion
,
The University of Tulsa
.
11.
Rhea
,
S.
,
Bini
,
M.
,
Fairweather
,
M.
, and
Jones
,
W.
,
2009
, “
RANS Modelling and LES of a Single-Phase, Impinging Plane jet
,”
Comput. Chem. Eng.
,
33
(
8
), pp.
1344
1353
. 10.1016/j.compchemeng.2009.01.020
12.
Bovo
,
M.
, and
Davidson
,
L.
,
2015
, “
Direct Comparison of LES and Experiment of a Single-Pulse Impinging jet
,”
Int. J. Heat Mass Transfer
,
88
, pp.
102
110
. 10.1016/j.ijheatmasstransfer.2015.04.025
13.
Apte
,
S. V.
,
Mahesh
,
K.
,
Moin
,
P.
, and
Oefelein
,
J. C.
,
2003
, “
Large-eddy Simulation of Swirling Particle-Laden Flows in a Coaxial-jet Combustor
,”
Int. J. Multiphase Flow
,
29
(
8
), pp.
1311
1331
. 10.1016/S0301-9322(03)00104-6
14.
Pesmazoglou
,
I.
,
Kempf
,
A. M.
, and
Navarro-Martinez
,
S.
,
2017
, “
Large Eddy Simulation of Particle Aggregation in Turbulent Jets
,”
J. Aerosol Sci.
,
111
, pp.
1
17
. 10.1016/j.jaerosci.2017.06.002
15.
“ANSYS® Academic Research Mechanical, Release 19.2.”
16.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments with the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
. 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
17.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
. 10.1063/1.857955
18.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
. 10.1063/1.858280
19.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
20.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
2006
, “
An Investigation of Particle Trajectories in two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
. 10.1017/S0022112072001806
21.
Gosman
,
A. D.
, and
Loannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
. 10.2514/3.62687
22.
Arabnejad
,
H.
,
Mansouri
,
A.
,
Shirazi
,
S.
, and
McLaury
,
B.
,
2015
, “
Development of Mechanistic Erosion Equation for Solid Particles
,”
Wear
,
332
, pp.
1044
1050
. 10.1016/j.wear.2015.01.031
23.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
. 10.2514/3.59826
24.
Launder
,
B. E.
, and
S
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London (England)
.
25.
Mahdavi
,
M.
,
Karimi
,
S.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
, “
Parametric Study of Erosion Under High Concentrated Slurry: Experimental and Numerical Analyses
,”
Proceedings of the ASME 2016 Fluids Engineering Division Summer Meeting Collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
, p.
V01AT06A002
. /10.1115/icnmm2016-7912
26.
Miska
,
S. J.
,
2008
,
Particle and Fluid Velocity Measurements for Viscous Liquids in a Direct Impingement Flow Resulting in Material Erosion
,
University of Tulsa, OK
.
27.
Karimi
,
S.
,
Mansouri
,
A.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
, “
Experimental Investigation on the Influence of Particle Size in a Submerged Slurry Jet on Erosion Rates and Patterns
,”
Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting
, p.
V01CT15A007
.
28.
El Hassan
,
M.
,
Assoum
,
H. H.
,
Sobolik
,
V.
,
Vétel
,
J.
,
Abed-Meraim
,
K.
,
Garon
,
A.
, and
Sakout
,
A.
,
2012
, “
Experimental Investigation of the Wall Shear Stress and the Vortex Dynamics in a Circular Impinging jet
,”
Exp. Fluids
,
52
(
6
), pp.
1475
1489
. 10.1007/s00348-012-1269-5
You do not currently have access to this content.