Abstract

This is an investigation on the effects of pyrolysis atmosphere on the conversion of biomass/coal blends to chars and volatile matter, and on the release of sulfur and nitrogen to the gas phase. Pulverized corn straw and lignite coal were co-pyrolyzed either in an inert carrier gas (N2) or in oxidative gases consisting of 3–7% O2 and 13–17% CO2 in a balance of 80% N2. The process occurred at temperatures in the range of 300–900 °C, under 1 atm, and lasted for 20 min. The results showed that the solid-phase conversion of coal/biomass blends ranged from 30 to 60%, increasing with increasing temperature. Increasing oxygen concentration under oxidative atmospheres promoted the solid-phase conversion at 500–900 °C, more than under the inert atmosphere, but had no discernible effect at lower temperatures (300–400 °C). Under the inert atmosphere, the co-pyrolysis of coal and biomass exhibited a synergistic effect, which promoted the transformation of solid feedstock into the gas phase or tar. To the contrary, under the oxidative atmospheres, the co-pyrolysis inhibited the evolution of volatile matter. Sulfur compounds, COS and SO2, were mainly released at temperatures in the range of 300–700 °C. Higher amounts of SO2 were released under the oxidative atmosphere, and the co-pyrolysis of coal and biomass promoted the release of COS. As for the transformation and release of nitrogen, NH3 and HCN were mainly released in the temperature range of 600–900 °C and more HCN was converted into NH3 under inert atmospheres. The effects of the oxygen content in the atmosphere on conventional gas species (CO, CH4, C2H6, and HCl) released from coal/biomass blends were also recorded.

References

2.
Energy Information Administration,
, U.S. Energy Information Administration, U.S. Energy Facts, https://www.eia.gov/energyexplained/index.php?page=us_energy_home, Accessed October 8, 2019.
3.
Kerollimustafa
,
M.
,
Lajqimakollib
,
V.
,
Berishashala
,
S.
,
Latifie
,
L.
,
Malollari
,
I.
, and
Morina
,
I.
,
2015
, “
Biomass and Biofuel Overview. A Global Sustainability Challenge
,”
J. Environ. Prot. Ecol.
,
16
(
1
), pp.
222
232
.
4.
Li
,
J.
,
Yang
,
W.
,
Blasiak
,
W.
, and
Ponzio
,
A.
,
2012
, “
Volumetric Combustion of Biomass for CO2 and NOx Reduction in Coal-Fired Boilers
,”
Fuel
,
102
(
6
), pp.
624
633
. 10.1016/j.fuel.2012.06.083
5.
Vassilev
,
S. V.
,
Vassileva
,
C. G.
, and
Vassilev
,
V. S.
,
2015
, “
Advantages and Disadvantages of Composition and Properties of Biomass in Comparison With Coal: An Overview
,”
Fuel
,
158
, pp.
330
350
. 10.1016/j.fuel.2015.05.050
6.
Müller-Hagedorn
,
M.
,
Bockhorn
,
H.
,
Krebs
,
L.
, and
Müller
,
U.
,
2002
, “
Investigation of Thermal Degradation of Three Wood Species as Initial Step in Combustion of Biomass
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
399
406
. 10.1016/S1540-7489(02)80053-0
7.
Ren
,
X.
,
Rui
,
S.
,
Meng
,
X.
,
Vorobiev
,
N.
,
Schiemann
,
M.
, and
Levendis
,
Y. A.
,
2017
, “
Carbon, Sulfur and Nitrogen Oxide Emissions From Combustion of Pulverized Raw and Torrefied Biomass
,”
Fuel
,
188
, pp.
310
323
. 10.1016/j.fuel.2016.10.017
8.
Neves
,
D.
,
Thunman
,
H.
,
Matos
,
A.
,
Tarelho
,
L.
, and
Gómez-Barea
,
A.
,
2011
, “
Characterization and Prediction of Biomass Pyrolysis Products
,”
Progress Energy Combust. Sci.
,
37
(
5
), pp.
611
630
. 10.1016/j.pecs.2011.01.001
9.
Uslu
,
A.
,
Faaij
,
A. P. C.
, and
Bergman
,
P. C. A.
,
2008
, “
Pre-Treatment Technologies, and Their Effect on International Bioenergy Supply Chain Logistics. Techno-Economic Evaluation of Torrefaction, Fast Pyrolysis and Pelletisation
,”
Energy
,
33
(
8
), pp.
1206
1223
. 10.1016/j.energy.2008.03.007
10.
Bridgeman
,
T. G.
,
Jones
,
J. M.
,
Shield
,
I.
, and
Williams
,
P. T.
,
2008
, “
Torrefaction of Reed Canary Grass, Wheat Straw and Willow to Enhance Solid Fuel Qualities and Combustion Properties
,”
Fuel
,
87
(
6
), pp.
844
856
. 10.1016/j.fuel.2007.05.041
11.
Patel
,
B.
,
Gami
,
B.
, and
Bhimani
,
H.
,
2011
, “
Improved Fuel Characteristics of Cotton Stalk, Prosopis and Sugarcane Bagasse Through Torrefaction
,”
Energy Sustain. Dev.
,
15
(
4
), pp.
372
375
. 10.1016/j.esd.2011.05.002
12.
Batidzirai
,
B.
,
Mignot
,
A. P. R.
,
Schakel
,
W. B.
,
Junginger
,
H. M.
, and
Faaij
,
A. P. C.
,
2013
, “
Biomass Torrefaction Technology: Techno-Economic Status and Future Prospects
,”
Energy
,
62
(
6
), pp.
196
214
. 10.1016/j.energy.2013.09.035
13.
Ren
,
X.
,
Rui
,
S.
,
Chi
,
H. H.
,
Meng
,
X.
,
Li
,
Y.
, and
Levendis
,
Y. A.
,
2017
, “
Hydrogen Chloride Emissions From Combustion of Raw and Torrefied Biomass
,”
Fuel
,
200
, pp.
37
46
.
14.
Rousset
,
P.
,
Macedo
,
L.
,
Commandré
,
J. M.
, and
Moreira
,
A.
,
2012
, “
Biomass Torrefaction Under Different Oxygen Concentrations and Its Effect on the Composition of the Solid By-Product
,”
J. Anal. Appl. Pyrolysis
,
96
, pp.
86
91
. 10.1016/j.jaap.2012.03.009
15.
Chen
,
Y.
,
Duan
,
J.
, and
Luo
,
Y.-h.
,
2008
, “
Investigation of Agricultural Residues Pyrolysis Behavior Under Inert and Oxidative Conditions
,”
J. Anal. Appl. Pyrolysis
,
83
(
2
), pp.
165
174
. 10.1016/j.jaap.2008.07.008
16.
Eseltine
,
D.
,
Thanapal
,
S. S.
,
Annamalai
,
K.
, and
Ranjan
,
D.
,
2013
, “
Torrefaction of Woody Biomass (Juniper and Mesquite) Using Inert and Non-Inert Gases
,”
Fuel
,
113
, pp.
379
388
. 10.1016/j.fuel.2013.04.085
17.
Wang
,
C.
,
Peng
,
J.
,
Li
,
H.
,
Bi
,
X. T.
,
Legros
,
R.
,
Lim
,
C. J.
, and
Sokhansanj
,
S.
,
2013
, “
Oxidative Torrefaction of Biomass Residues and Densification of Torrefied Sawdust to Pellets
,”
Bioresour. Technol.
,
127
, pp.
318
325
. 10.1016/j.biortech.2012.09.092
18.
Chen
,
W.-H.
,
Lu
,
K.-M.
,
Lee
,
W.-J.
,
Liu
,
S.-H.
, and
Lin
,
T.-C.
,
2014
, “
Non-Oxidative and Oxidative Torrefaction Characterization and SEM Observations of Fibrous and Ligneous Biomass
,”
Appl. Energy
,
114
, pp.
104
113
. 10.1016/j.apenergy.2013.09.045
19.
Saadon
,
S.
,
Uemura
,
Y.
, and
Mansor
,
N.
,
2014
, “
Torrefaction in the Presence of Oxygen and Carbon Dioxide: The Effect on Yield of Oil Palm Kernel Shell
,”
Procedia Chem.
,
9
, pp.
194
201
. 10.1016/j.proche.2014.05.023
20.
Uemura
,
Y.
,
Saadon
,
S.
,
Osman
,
N.
,
Mansor
,
N.
, and
Tanoue
,
K. I.
,
2015
, “
Torrefaction of Oil Palm Kernel Shell in the Presence of Oxygen and Carbon Dioxide
,”
Fuel
,
144
, pp.
171
179
. 10.1016/j.fuel.2014.12.050
21.
Uemura
,
Y.
,
Sellappah
,
V.
,
Trinh
,
T. H.
,
Hassan
,
S.
, and
Tanoue
,
K. I.
,
2017
, “
Torrefaction of Empty Fruit Bunches Under Biomass Combustion Gas Atmosphere
,”
Bioresour. Technol.
,
243
, pp.
107
117
. 10.1016/j.biortech.2017.06.057
22.
Chiang
,
W. F.
,
Fang
,
H. Y.
,
Wu
,
C. H.
,
Chang
,
C. Y.
,
Chang
,
Y. M.
, and
Shie
,
J. L.
,
2008
, “
Pyrolysis Kinetics of Rice Husk in Different Oxygen Concentrations
,”
J. Environ. Eng.
,
134
(
4
), pp.
316
325
. 10.1061/(ASCE)0733-9372(2008)134:4(316)
23.
Ren
,
Q.
, and
Zhao
,
C.
,
2012
, “
NOX and N2O Precursors From Biomass Pyrolysis: Nitrogen Transformation From Amino Acid
,”
Environ. Sci. Technol.
,
46
(
7
), pp.
4236
4240
. 10.1021/es204142e
24.
Saleh
,
S. B.
,
Flensborg
,
J. P.
,
Shoulaifar
,
T. K.
,
Sárossy
,
Z.
,
Hansen
,
B. B.
,
Egsgaard
,
H.
,
Demartini
,
N.
,
Jensen
,
P. A.
,
Glarborg
,
P.
, and
Dam-Johansen
,
K.
,
2014
, “
Release of Chlorine and Sulfur During Biomass Torrefaction and Pyrolysis
,”
Energy Fuels
,
28
(
6
), pp.
3738
3746
. 10.1021/ef4021262
25.
Knudsen
,
J. N.
,
Jensen
,
P. A.
,
Lin
,
W.
,
Frandsen
,
F. J.
, and
Dam-Johansen
,
K.
,
2004
, “
Sulfur Transformations During Thermal Conversion of Herbaceous Biomass
,”
Energy Fuels
,
18
(
3
), pp.
810
819
. 10.1021/ef034085b
26.
Nussbaumer
,
T.
,
2003
, “
Combustion and Co-Combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction
,”
Energy Fuels
,
17
(
6
), pp.
1510
1521
. 10.1021/ef030031q
27.
Gold
,
B. A.
, and
Tillman
,
D. A.
,
1996
, “
Wood Cofiring Evaluation at TVA Power Plants
,”
Biomass Bioenergy
,
10
(
2
), pp.
71
78
. 10.1016/0961-9534(95)00062-3
28.
Demirbas
,
A.
,
2003
, “
Sustainable Cofiring of Biomass With Coal
,”
Energy Convers. Manage.
,
44
(
9
), pp.
1465
1479
. 10.1016/S0196-8904(02)00144-9
29.
Contreras
,
M. L.
,
García-Frutos
,
F. J.
, and
Bahillo
,
A.
,
2015
, “
Study of the Thermal Behaviour of Coal/Biomass Blends During Oxy-Fuel Combustion by Thermogravimetric Analysis
,”
J. Therm. Anal. Calorim.
,
123
(
2
), pp.
1643
1655
. 10.1007/s10973-015-5067-1
30.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
. 10.1115/1.4032239
31.
Rokni
,
E.
,
Chi
,
H. H.
, and
Levendis
,
Y. A.
,
2017
, “
In-Furnace Sulfur Capture by Co-Firing Coal With Alkali-Based Sorbents
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042204
. 10.1115/1.4035752
32.
Soncini
,
R. M.
,
Means
,
N. C.
, and
Weiland
,
N. T.
,
2013
, “
Co-Pyrolysis of Low Rank Coals and Biomass: Product Distributions
,”
Fuel
,
112
, pp.
74
82
.
33.
Li
,
S.
,
Chen
,
X.
,
Liu
,
A.
,
Wang
,
L.
, and
Yu
,
G.
,
2015
, “
Co-Pyrolysis Characteristic of Biomass and Bituminous Coal
,”
Bioresour. Technol.
,
179
, pp.
414
420
.
34.
Krerkkaiwan
,
S.
,
Fushimi
,
C.
,
Tsutsumi
,
A.
, and
Kuchonthara
,
P.
,
2013
, “
Synergetic Effect During Co-Pyrolysis/Gasification of Biomass and Sub-Bituminous Coal
,”
Fuel Process. Technol.
,
115
, pp.
11
18
. 10.1016/j.fuproc.2013.03.044
35.
Dejong
,
W.
,
Dinola
,
G.
,
Venneker
,
B.
,
Spliethoff
,
H.
, and
Wojtowicz
,
M.
,
2007
, “
TG-FTIR Pyrolysis of Coal and Secondary Biomass Fuels: Determination of Pyrolysis Kinetic Parameters for Main Species and NOx Precursors
,”
Fuel
,
86
(
15
), pp.
2367
2376
. 10.1016/j.fuel.2007.01.032
36.
Park
,
D. K.
,
Kim
,
S. D.
,
Lee
,
S. H.
, and
Lee
,
J. G.
,
2010
, “
Co-Pyrolysis Characteristics of Sawdust and Coal Blend in TGA and a Fixed Bed Reactor
,”
Bioresour. Technol.
,
101
(
15
), pp.
6151
6156
. 10.1016/j.biortech.2010.02.087
37.
Sonobe
,
T.
,
Worasuwannarak
,
N.
, and
Pipatmanomai
,
S.
,
2008
, “
Synergies in Co-Pyrolysis of Thai Lignite and Corncob
,”
Fuel Process. Technol.
,
89
(
12
), pp.
1371
1378
. 10.1016/j.fuproc.2008.06.006
38.
Zhang
,
L.
,
Xu
,
S.
,
Zhao
,
W.
, and
Liu
,
S.
,
2007
, “
Co-Pyrolysis of Biomass and Coal in a Free Fall Reactor
,”
Fuel
,
86
(
3
), pp.
353
359
. 10.1016/j.fuel.2006.07.004
39.
Zhang
,
J.
,
Quan
,
C.
,
Qiu
,
Y.
, and
Xu
,
S.
,
2015
, “
Effect of Char on Co-Pyrolysis of Biomass and Coal in a Free Fall Reactor
,”
Fuel Process. Technol.
,
135
, pp.
73
79
. 10.1016/j.fuproc.2014.10.022
40.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction and Air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082202
. 10.1115/1.4042564
41.
Guo
,
H.
,
Wu
,
H.
,
Yang
,
N.
,
Fu
,
Q.
,
Liu
,
F.
,
Zhang
,
H.
,
Hu
,
R.
, and
Hu
,
Y.
,
2019
, “
XAS Combined With TG–DTG Study on Synergic Effect on Sulfur Transformation During Co-Pyrolysis of Sawdust and Lignite
,”
J. Therm. Anal. Calorim.
,
135
(
4
), pp.
2475
2480
. 10.1007/s10973-018-7259-y
42.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2007
, “
Synergy in Devolatilization Characteristics of Lignite and Hazelnut Shell During Co-Pyrolysis
,”
Fuel
,
86
(
3
), pp.
373
380
. 10.1016/j.fuel.2006.07.005
43.
Cordero
,
T.
,
Rodriguez-Mirasol
,
J.
, and
Pastrana
,
J.
,
2004
, “
Improved Solid Fuels From Co-Pyrolysis of a High-Sulphur Content Coal and Different Lignocellulosic Wastes
,”
Fuel
,
83
(
11/12
), pp.
1585
1590
. 10.1016/j.fuel.2004.02.013
44.
Nelson
,
P. F.
,
Kelly
,
M. D.
, and
Wornat
,
M. J.
,
1991
, “
Conversion of Fuel Nitrogen in Coal Volatiles to NOx Precursors Under Rapid Heating Conditions
,”
Fuel
,
70
(
3
), pp.
403
407
. 10.1016/0016-2361(91)90130-3
45.
Shuai
,
Y.
,
Xue-Li
,
C.
,
Wei-Feng
,
L.
,
Hai-Feng
,
L.
, and
Fu-Chen
,
W.
,
2011
, “
Nitrogen Conversion Under Rapid Pyrolysis of Two Types of Aquatic Biomass and Corresponding Blends With Coal
,”
Bioresour. Technol.
,
102
(
21
), pp.
10124
10130
. 10.1016/j.biortech.2011.08.047
46.
Yuan
,
S.
,
Zhou
,
Z.-j.
,
Li
,
J.
,
Chen
,
X.-l.
, and
Wang
,
F.-c.
,
2011
, “
HCN and NH3 (NOx Precursors) Released Under Rapid Pyrolysis of Biomass/Coal Blends
,”
J. Anal. Appl. Pyrolysis
,
92
(
2
), pp.
463
469
. 10.1016/j.jaap.2011.08.010
47.
Song
,
Y.
,
Tahmasebi
,
A.
, and
Yu
,
J.
,
2014
, “
Co-Pyrolysis of Pine Sawdust and Lignite in a Thermogravimetric Analyzer and a Fixed-Bed Reactor
,”
Bioresour. Technol.
,
174
, pp.
204
211
. 10.1016/j.biortech.2014.10.027
48.
Darmstadt
,
H.
,
Garcia-Perez
,
M.
,
Chaala
,
A.
,
Cao
,
N. Z.
, and
Roy
,
C.
,
2001
, “
Co-Pyrolysis Under Vacuum of Sugar Cane Bagasse and Petroleum Residue: Properties of the Char and Activated Char Products
,”
Carbon
,
39
(
6
), pp.
815
825
. 10.1016/S0008-6223(00)00204-9
49.
Haryanto
,
A.
, and
Hong
,
K. S.
,
2011
, “
Modeling and Simulation of an Oxy-Fuel Combustion Boiler System With Flue Gas Recirculation
,”
Comput. Chem. Eng.
,
35
(
1
), pp.
25
40
. 10.1016/j.compchemeng.2010.05.001
50.
Tan
,
Y.
,
Croiset
,
E.
,
Douglas
,
M. A.
, and
Thambimuthu
,
K. V.
,
2006
, “
Combustion Characteristics of Coal in a Mixture of Oxygen and Recycled Flue Gas
,”
Fuel
,
85
(
4
), pp.
507
512
. 10.1016/j.fuel.2005.08.010
51.
Wu
,
Z.
,
Yang
,
W.
,
Li
,
Y.
, and
Yang
,
B.
,
2018
, “
Co-Pyrolysis Behavior of Microalgae Biomass and Low-Quality Coal: Products Distributions, Char-Surface Morphology, and Synergistic Effects
,”
Bioresour. Technol.
,
255
, pp.
238
245
. 10.1016/j.biortech.2018.01.141
52.
Jensen
,
P. A.
,
Sander
,
B.
, and
Dam-Johansen
,
K.
,
2001
, “
Pretreatment of Straw for Power Production by Pyrolysis and Char Wash
,”
Biomass Bioenergy
,
20
(
6
), pp.
431
446
. 10.1016/S0961-9534(01)00005-8
53.
Lyu
,
S.
,
Cao
,
T.
,
Zhang
,
L.
,
Liu
,
J.
, and
Ren
,
X.
,
2019
, “
Assessment of Low-Rank Coal and Biomass Co-Pyrolysis System Coupled With Gasification
,”
Int. J. Energy Res.
,
8
, pp.
2652
2664
.
54.
Rokni
,
E.
,
Ren
,
X.
,
Panahi
,
A.
, and
Levendis
,
Y. A.
,
2018
, “
Emissions of SO2, NOx, CO2, and HCl From Co-Firing of Coals With Raw and Torrefied Biomass Fuels
,”
Fuel
,
211
, pp.
363
374
. 10.1016/j.fuel.2017.09.049
55.
Chinese-Standard
,
2014
,
Translated English of Chinese Standard.
GB/T30733-2014,
Chinese Standards
,
Beijing
, https://books.google.com/books/about/GB_T_30733_2014_Translated_English_of_Ch.html?id=-JF4BwAAQBAJ
56.
Chinese-Standard
,
2007
,
Determination of Total Sulfur in Coal.
GB/T 214-2007,
Chinese Standards
,
Beijing
, https://www.chinesestandard.net/PDF/English.aspx/GBT214-2007
57.
Ren
,
X.
,
Rokni
,
E.
,
Sun
,
R.
,
Meng
,
X.
, and
Levendis
,
Y. A.
,
2017
, “
Evolution of Chlorine-Bearing Gases During Corn Straw Torrefaction at Different Temperatures
,”
Energy Fuels
,
31
(
12
), pp.
13713
13723
. 10.1021/acs.energyfuels.7b02540
58.
Liu
,
Y.
,
Rokni
,
E.
,
Yang
,
R.
,
Ren
,
X.
,
Sun
,
R.
, and
Levendis
,
Y.
,
2020
, “
Torrefaction of Corn Straw in Oxygen and Carbon Dioxide Containing Gases: Mass/Energy Yields and Evolution of Gaseous Species
,”
Fuel.
,
285
. 10.1016/j.fuel.2020.119044
59.
Yang
,
H.
,
Rong
,
Y.
,
Chen
,
H.
,
Dong
,
H. L.
, and
Zheng
,
C.
,
2007
, “
Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis
,”
Fuel
,
86
(
12
), pp.
1781
1788
. 10.1016/j.fuel.2006.12.013
60.
Uemura
,
Y.
,
Omar
,
W. N.
,
Tsutsui
,
T.
, and
Yusup
,
S. B.
,
2011
, “
Torrefaction of Oil Palm Wastes
,”
Fuel
,
90
(
8
), pp.
2585
2591
. 10.1016/j.fuel.2011.03.021
61.
Wannapeera
,
J.
,
Fungtammasan
,
B.
, and
Worasuwannarak
,
N.
,
2011
, “
Effects of Temperature and Holding Time During Torrefaction on the Pyrolysis Behaviors of Woody Biomass
,”
J. Anal. Appl. Pyrol.
,
92
(
1
), pp.
99
105
. 10.1016/j.jaap.2011.04.010
62.
Levendis
,
Y. A.
,
Zhu
,
W.
,
Wise
,
D. L.
, and
Simons
,
G. A.
,
1993
, “
Effectiveness of Calcium Magnesium Acetate as an SOX Sorbent in Coal Combustion
,”
AIChE J.
,
39
(
5
), pp.
761
773
. 10.1002/aic.690390505
63.
Calkins
,
W. H.
,
1987
, “
Investigation of Organic Sulfur-Containing Structures in Coal by Flash Pyrolysis Experiments
,”
Energy Fuels
,
1
(
1
), pp.
59
64
. 10.1021/ef00001a011
64.
Wang
,
M.
,
Tian
,
J.
,
Roberts
,
D. G.
,
Chang
,
L.
, and
Xie
,
K.
,
2015
, “
Interactions Between Corncob and Lignite During Temperature-Programmed Co-Pyrolysis
,”
Fuel
,
142
, pp.
102
108
. 10.1016/j.fuel.2014.11.003
65.
Saikia
,
M.
,
Ali
,
A. A.
,
Borah
,
R. C.
,
Bezbarua
,
M. S.
,
Saikia
,
B. K.
, and
Saikia
,
N.
,
2018
, “
Effects of Biomass Types on the Co-Pyrolysis Behaviour of a Sub-Bituminous High-Sulphur Coal
,”
Energy Ecol. Environ.
,
3
(
5
), pp.
251
265
. 10.1007/s40974-018-0097-8
66.
Schafer
,
S.
, and
Bonn
,
B.
,
2002
, “
Hydrolysis of HCN as an Important Step in Nitrogen Oxide Formation in Fluidised Combustion. Part II: Heterogeneous Reactions Involving Limestone
,”
Fuel
,
81
(
13
), pp.
1641
1646
. 10.1016/S0016-2361(02)00096-0
67.
Hansson
,
K. M.
,
Åmand
,
L. E.
,
Habermann
,
A.
, and
Winter
,
F.
,
2003
, “
Pyrolysis of Poly-L-Leucine Under Combustion-Like Conditions
,”
Fuel
,
82
(
6
), pp.
653
660
. 10.1016/S0016-2361(02)00357-5
68.
Becidan
,
M.
,
Skreiberg
,
Ø
, and
Hustad
,
J. E.
,
2007
, “
NOX and N2O Precursors (NH3 and HCN) in Pyrolysis of Biomass Residues
,”
Energy Fuels
,
21
(
2
), pp.
1173
1180
. 10.1021/ef060426k
You do not currently have access to this content.