Abstract

This article aims to study numerically the effect of curvature of linear blade profile on the performance of small-scale horizontal axis wind turbine (SSHAWT). Rotors with two curvature types, f forward angles 5 deg, 10 deg, 15 deg, 20 deg, 30 deg, and 45 deg and backward angles −5 deg, −10 deg, and −15 deg, are investigated. Furthermore, three curvature positions of r/R = 0.8, 0.9, and 0.95 are studied. The numerical simulations are performed on rotors of radius 0.5 m at different wind speeds. The results are compared with straight rotor of linear profiles of chord and twist, which is considered as base rotor. It is found that the rotor with forward curvature of 5 deg and r/R = 0.9 has the highest power coefficient compared with the other rotors. At the peak performance, the proposed rotor reduces the axial thrust by about 12.5% compared with the base rotor. The flow behavior represented by the streamlines contours is also discussed. In such case, the separation approximately disappeared for the tip speed ratios of 5 and 6, which is responsible for the performance peak.

References

1.
Ali
,
A.
,
Chowdhury
,
H.
,
Loganathan
,
B.
, and
Alam
,
F.
,
2015
, “
An Aerodynamic Study of a Domestic Scale Horizontal Axis Wind Turbine With Varied Tip Configurations
,”
Procedia Eng.
,
105
, pp.
757
762
.
2.
Jackson
,
R.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
. 10.1115/1.4036051
3.
Kaya
,
M. N.
,
Kose
,
F.
,
Ingham
,
D.
,
Maa
,
L.
, and
Pourkashanian
,
M.
,
2018
, “
Aerodynamic Performance of a Horizontal Axis Wind Turbine With Forward and Backward Swept Blades
,”
Wind Eng. Ind. Aerod.
,
176
, pp.
166
173
. 10.1016/j.jweia.2018.03.023
4.
MacPhee
,
D. W.
, and
Beyene
,
A.
,
2019
, “
Performance Analysis of a Small Wind Turbine Equipped With Flexible Blades
,”
Renewable Energy
,
51
, pp.
497
508
. 10.1016/j.renene.2018.08.014
5.
Abate
,
G.
,
Mavris
,
D. N.
, and
Sankar
,
L. N.
,
2019
, “
Performance Effects of Leading Edge Tubercles on the NREL Phase VI Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051206
. 10.1115/1.4042529
6.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
. 10.1115/1.4030399
7.
Abdelwaly
,
M.
,
El-Batsh
,
H.
, and
Hanna
,
M. B.
,
2019
, “
Numerical Study for the Flow Field and Power Augmentation in a Horizontal Axis Wind Turbine
,”
Sustainable Energy Technol. Assess.
,
31
, pp.
245
253
. 10.1016/j.seta.2018.12.028
8.
Liu
,
X.
,
Wang
,
L.
, and
Tang
,
X.
,
2013
, “
Optimized Linearization of Chord and Twist Angle Profiles for Fixed-Pitch Fixed-Speed Wind Turbine Blades
,”
Renewable Energy
,
57
, pp.
111
119
. 10.1016/j.renene.2013.01.036
9.
Tahani
,
M.
,
Kavari
,
G.
,
Masdari
,
M.
, and
Mirhosseini
,
M.
,
2017
, “
Aerodynamic Design of Horizontal Axis Wind Turbine With Innovative Local Linearization of Chord and Twist Distributions
,”
Energy
,
131
, pp.
78
91
. 10.1016/j.energy.2017.05.033
10.
Gupta
,
R. K.
,
Warudkarb
,
V.
,
Purohitb
,
R.
, and
Rajpurohitc
,
S. S.
,
2017
, “
Modeling and Aerodynamic Analysis of Small Scale, Mixed Airfoil Horizontal Axis Wind Turbine Blade
,”
Materials Today
,
4
(
4
), pp.
5370
5384
.
11.
Hasan
,
M.
, and
El Shahat
,
A.
,
2017
,
Design and Performance Analysis of Small Scale Horizontal Axis Wind Turbine for Nano Grid Application
,
Master of Science, Statesboro
,
GA
.
12.
Derakhshan
,
S.
,
Tavaziani
,
A.
, and
Kasaeian
,
N.
,
2015
, “
Numerical Shape Optimization of a Wind Turbine Blades Using Artificial Bee Colony Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051210
. 10.1115/1.4031043
13.
Wang
,
Y.
,
Li
,
G.
,
Shen
,
S.
,
Huang
,
D.
, and
Zheng
,
Z.
,
2018
, “
Investigation on Aerodynamic Performance of Horizontal Axis Wind Turbine by Setting Micro-Cylinder in Front of the Blade Leading Edge
,”
Energy
,
143
, pp.
1107
1124
. 10.1016/j.energy.2017.10.094
14.
Hak
,
M. L.
, and
Oh
,
J. K.
,
2020
, “
Performance Improvement of Horizontal Axis Wind Turbines by Aerodynamic Shape Optimization Including Aeroealstic Deformation
,”
Renewable Energy
,
147
, pp.
2128
2140
. 10.1016/j.renene.2019.09.125
15.
Farhan
,
A.
,
Hassanpour
,
A.
,
Burns
,
A.
, and
Motlagh
,
Y. G.
,
2019
, “
Numerical Study of Effect of Winglet Planform and Airfoil on a Horizontal Axis Wind Turbine Performance
,”
Renewable Energy
,
131
, pp.
1255
1273
. 10.1016/j.renene.2018.08.017
16.
Hasan
,
A. S.
,
Abousabae
,
M.
,
Salem
,
A.
, and
Amano
,
R. S.
,
2020
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011302
. 10.1115/1.4047602
17.
Sessarego
,
M.
,
Feng
,
J.
,
Ramos-Garcia
,
N.
, and
Horcas
,
S. G.
,
2020
, “
Design Optimization of a Curved Wind Turbine Blade Using Neural Networks and an Aero-Elastic Vortex Method Under Turbulent Inflow
,”
Renewable Energy
,
146
, pp.
1524
1535
. 10.1016/j.renene.2019.07.046
18.
Fluent
,
F.
,
2014
,
Ansys Fluent 17.0 User's Guide
, USA.
19.
Abdelsalam
,
A. M.
,
Boopathi
,
K.
,
Gomathinayagam
,
S.
,
Kumar
,
S. S.
, and
Ramalingam
,
V.
,
2014
, “
Experimental and Numerical Studies on the Wake Behavior of a Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
128
, pp.
54
65
. 10.1016/j.jweia.2014.03.002
20.
AbdelSalam
,
A. M.
, and
Ramalingam
,
V.
,
2014
, “
Wake Prediction of Horizontal-Axis Wind Turbine Using Full-Rotor Modeling
,”
J. Wind Eng. Ind. Aerodyn.
,
12
, pp.
7
19
. 10.1016/j.jweia.2013.11.005
21.
Sudhamshu
,
A.
,
2016
, “
Numerical Study of Effect of Pitch Angle on Performance Characteristics of a HAWT
,”
Eng. Sci. Technol.
,
19
(
1
), pp.
632
641
.
22.
Lanzafame
,
R.
,
Mauro
,
S.
, and
Messina
,
M.
,
2013
, “
Wind Turbine CFD Modeling Using a Correlation-Based Transitional Model
,”
Renewable Energy
,
52
, pp.
31
39
. 10.1016/j.renene.2012.10.007
23.
Yelmule
,
M. M.
, and
Vsj
,
E. A.
,
2013
, “
CFD Predictions of NREL Phase VI Rotor Experiments in NASA/AMES Wind Tunnel
,”
Int. J. Renew. Energy Resour.
,
3
, pp.
261
269
.
24.
Sedighi
,
H.
,
Akbarzadeh
,
P.
, and
Salavatipour
,
A.
,
2020
, “
Aerodynamic Performance Enhancement of Horizontal Axis Wind Turbines by Dimples on Blades: Numerical Investigation
,”
Energy
,
195
, p.
117056
. 10.1016/j.energy.2020.117056
25.
Costa Rocha
,
P. A.
,
Barbosa Rocha
,
H.
,
Moura Carneiro
,
F. O.
,
Vieira da Silva
,
M. E.
, and
Bueno
,
V.
,
2014
, “
A k-ω SST (Shear Stress Transport) Turbulence Model Calibration: A Case Study on a Small Scale Horizontal Axis Wind Turbine
,”
Energy
,
65
, pp.
412
418
. 10.1016/j.energy.2013.11.050
26.
Sagol
,
E.
,
Reggio
,
M.
, and
Ilinca
,
A.
,
2012
, “
Assessment of Two-Equation Turbulence Models and Validation of the Performance Characteristics of an Experimental Wind Turbine by CFD
,”
ISRN Mech. Eng.
,
2012
.
27.
Menter
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
28.
Lee
,
M. H.
,
Shiah
,
Y. C.
, and
Bai
,
C. G.
,
2016
, “
Experiments and Numerical Simulations of the Rotor-Blade Performance for a Small-Scale Horizontal Axis Wind Turbine
,”
Wind Eng. Ind. Aerod.
,
149
, pp.
17
29
. 10.1016/j.jweia.2015.12.002
29.
Maindonald
,
J.
, and
Braun
,
W. J.
,
2003
,
Data Analysis and Graphics Using R—An Example-Based Approach
, 3rd. ed.,
Cambridge University Press
,
Cambridge, MA
.
30.
Wood
,
D.
,
1991
, “
A Three-Dimensional Analysis of Stall-Delay on a Horizontal-Axis Wind Turbine
,”
Wind Eng. Ind. Aerod.
,
37
, pp.
11
14
.
31.
Snel
,
H.
,
1993
, “
Sectional Prediction of 3D Effects for Stalled Flow on Rotating Blades and Comparison With Measurements
,”
1993 European Community Wind Energy Conference: Proceedings of the International Conference
,
Lübeck-Travemünde, Germany
,
Mar. 8–12
.
You do not currently have access to this content.