Abstract

Condensing boilers are used in commercial and residential buildings extensively. In this article, a loss method is proposed to estimate the energy and exergy efficiencies of condensing hot water boilers. The presented method is based on the development of the method presented in ASME PTC 4.1. Energy loss terms consist of exhaust flue gas, carbon monoxide formation, radiation, and condensate outflow sensible heat. Exergy loss terms also include radiation losses, physical exergy of the exhaust flue gas, chemical exergy of the exhaust flue gas, increase in the chemical exergy of the flue gas due to carbon monoxide formation, condensate outflow exergy, boiler exergy destruction, and economizer exergy destruction. Energy and exergy efficiencies are calculated by estimation of these loss terms. To depict the method’s capability and compare results with the direct method, an experimental setup was designed and constructed. Results of energy and exergy audition of the boiler by applying the loss method are compared with the direct method. The results show that, although the condensing economizer improves energy efficiency, it does not improve the exergy efficiency significantly. The energy and exergy efficiencies were 98.65% and 5.14%, respectively.

References

1.
Samanta
,
A.
,
Saha
,
S.
,
Biswas
,
J.
, and
Dutta
,
A.
,
2014
, “
Evaluation of Impact of Shading Devices on Energy Consumption of Buildings in Tropical Regions
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
024503
. 10.1115/1.4027154
2.
Scoccia
,
R.
,
Toppi
,
T.
,
Aprile
,
M.
, and
Motta
,
M.
,
2018
, “
Absorption and Compression Heat Pump Systems for Space Heating and DHW in European Buildings: Energy, Environmental and Economic Analysis
,”
J. Build. Eng.
,
16
, pp.
94
105
. 10.1016/j.jobe.2017.12.006
3.
Brand
,
M.
, and
Svendsen
,
S.
,
2013
, “
Renewable-Based Low-Temperature District Heating for Existing Buildings in Various Stages of Refurbishment
,”
Energy
,
62
, pp.
311
319
. 10.1016/j.energy.2013.09.027
4.
Somasundaram
,
S.
,
Winiarski
,
D. W.
, and
Belzer
,
D. B.
,
2002
, “
Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment
,”
ASME J. Energy Resour. Technol.
,
124
(
2
), pp.
116
124
. 10.1115/1.1447929
5.
U. S. Congress
,
1992
, “
Energy Policy Act of 1992
,”
US Public Law 486 nC
.
6.
Ganapathy
,
V.
,
2002
,
Industrial Boilers and Heat Recovery Steam Generators: Design, Applications, and Calculations
,
CRC Press
,
Boca Raton, FL
.
7.
Clarke
,
L. B.
, and
Sloss
,
L. L.
,
1992
,
Trace Elements: Emissions From Coal Combustion and Gasification
, Vol.
49
,
IEA Coal Research
,
London
.
8.
Satyavada
,
H.
, and
Baldi
,
S.
,
2016
, “
An Integrated Control-Oriented Modelling for HVAC Performance Benchmarking
,”
J. Build. Eng.
,
6
, pp.
262
273
. 10.1016/j.jobe.2016.04.005
9.
Lazzarin
,
R. M.
,
2012
, “
Condensing Boilers in Buildings and Plants Refurbishment
,”
Energy Build.
,
47
, pp.
61
67
. 10.1016/j.enbuild.2011.11.029
10.
Jin
,
H.
,
Ishida
,
M.
,
Kobayashi
,
M.
, and
Nunokawa
,
M.
,
1997
, “
Exergy Evaluation of Two Current Advanced Power Plants: Supercritical Steam Turbine and Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
250
256.
11.
Cirillo
,
E.
,
Lazzarin
,
R.
,
Piccininni
,
F.
, and
Caliari
,
R.
,
1990
, “
Energy Analysis of a Central Domestic Hot Water Heating System Equipped With Condensing Boilers
,”
Int. J. Energy Res.
,
14
(
1
), pp.
73
81
. 10.1002/er.4440140109
12.
Kaya
,
D.
, and
Eyidogan
,
M.
,
2009
, “
Energy Conservation Opportunity in Boiler Systems
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
03240
1. 10.1115/1.3185440
13.
Feng
,
M.
, and
Tao
,
Y.-X.
,
2007
, “
Energy and Exergy Performance of Building HVAC System With Cogeneration Plant in Subtropical Climate
,”
ASME Int. Mech. Eng. Congress Exposition
,
43009
, pp.
159
171
. 10.1115/imece2007-41639
14.
Yildiz
,
A.
, and
Güngör
,
A.
,
2009
, “
Energy and Exergy Analyses of Space Heating in Buildings
,”
Appl. Energy
,
86
(
10
), pp.
1939
1948
. 10.1016/j.apenergy.2008.12.010
15.
Yucer
,
C. T.
, and
Hepbasli
,
A.
,
2011
, “
Thermodynamic Analysis of a Building Using Exergy Analysis Method
,”
Energy Build.
,
43
(
2–3
), pp.
536
542
. 10.1016/j.enbuild.2010.10.019
16.
Sayadi
,
S.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2020
, “
Splitting the Dynamic Exergy Destruction Within a Building Energy System Into Endogenous and Exogenous Parts Using Measured Data From the Building Automation System
,”
Int. J. Energy Res.
,
44
(
6
), pp.
4395
4410
. 10.1002/er.5213
17.
Sayadi
,
S.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2019
, “
Dynamic Exergetic Assessment of Heating and Cooling Systems in a Complex Building
,”
Energy Convers. Manag.
,
183
, pp.
561
576
. 10.1016/j.enconman.2018.12.090
18.
Behbahani-nia
,
A.
,
Sayadi
,
S.
, and
Soleymani
,
M.
,
2010
, “
Thermoeconomic Optimization of the Pinch Point and Gas-Side Velocity in Heat Recovery Steam Generators
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
224
(
6
), pp.
761
771
. 10.1243/09576509JPE953
19.
Behbahani-nia
,
A.
,
Bagheri
,
M.
, and
Bahrampoury
,
R.
,
2010
, “
Optimization of Fire Tube Heat Recovery Steam Generators for Cogeneration Plants Through Genetic Algorithm
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2378
2385
. 10.1016/j.applthermaleng.2010.06.007
20.
Pattanayak
,
L.
, and
Ayyagari
,
S. K.
,
2014
, “
Use of Energy and Exergy Analysis in Coal Fired Boiler
,”
Int. J. Multidiscip. Sci. Eng.
,
5
(
3
), pp.
17
23
.
21.
Ohijeagbon
,
I. O.
,
Waheed
,
M. A.
, and
Jekayinfa
,
S. O.
,
2013
, “
Methodology for the Physical and Chemical Exergetic Analysis of Steam Boilers
,”
Energy
,
53
, pp.
153
164
. 10.1016/j.energy.2013.02.039
22.
Terhan
,
M.
, and
Comakli
,
K.
,
2017
, “
Energy and Exergy Analyses of Natural Gas-Fired Boilers in a District Heating System
,”
Appl. Therm. Eng.
,
121
, pp.
380
387
. 10.1016/j.applthermaleng.2017.04.091
23.
Yasni
,
E.
, and
Carrington
,
C. G.
,
1988
, “
Off-Design Exergy Audit of a Thermal Power Station
, ”
ASME J. Eng. Gas Turbines Power
,
110
(
2
), pp.
166
172
. 10.1115/1.3240096
24.
Behbahaninia
,
A.
,
Ramezani
,
S.
, and
Lotfi Hejrandoost
,
M.
,
2017
, “
A Loss Method for Exergy Auditing of Steam Boilers
,”
Energy
,
140
, pp.
253
260
. 10.1016/j.energy.2017.08.090
25.
A. PTC
,
1964
,
ASME PTC 4.1 Steam Generating Units
,
ASME
,
New York
.
26.
A. PTC
,
1998
,
ASME PTC 4-1998 Fired Steam Generators
,
ASME
,
New York
.
27.
A. PTC
,
2009
,
ASME PTC 4-2008 Fired Steam Generators
,
ASME
,
New York
.
28.
A. PTC
,
2013
,
ASME PTC 4-2013 Fired Steam Generators
,
ASME
,
New York
.
29.
B. Standard-BS845
,
1987
,
Methods for Assessing Thermal Performance of Boilers for Steam, Hot Water and High Temperature Heat Transfer Fluids, Comprehensive Procedure
,
Br. Stand. Institution
,
UK
.
30.
Dovchin
,
B.
,
1999
, “
Heating Boilers, Part 3: Gas Central Heating Boilers–Assembly Comprising a Boiler Body and a Forced Draught Burner
,” British Standard, BS EN 303-3:199.
31.
Behbahaninia
,
A.
,
Banifateme
,
M.
, and
Azami
,
S.
,
2019
, “Energy Audit of Waste-to-Energy Power Plants,”
Auditing: An Overview
,
J.
Rymill
, and
T.
Cavenagh
, eds.,
Nova Science Publishers, Inc.
, pp.
77
123
.
32.
BEE
,
2005
,
Book IV Energy Performance Assessment for Equipment and Utility Systems
,
BEE
,
New Delhi, India
.
33.
Kotas
,
T. J.
,
1987
,
The Exergy Method of Thermal Plant Analysis
, Vol.
21
, No.
3
,
Elsevier
,
New York
.
34.
Shaoxiang
,
Z.
,
2017
, “
Chemical Exergy of Fuels and Efficiency Analysis of Energy Utilizations
,”
ASME International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
, Vol.
58417
, p.
V006T08A078
.
You do not currently have access to this content.