Abstract

Actual formation and intensity of shock wave generated during gradual opening and closure between each port and passages of wave rotor are studied by means of experiment and computational fluid dynamics simulation. The results show that the intensity of shock wave increases with the distance from high-pressure inlet, and the reason for the variation tendency is the superposition of compression waves. By changing the rotational speed and the expansion ratio, the shock wave intensity can be adjusted, but the position where the intensity reaches maximum stays constant basically and keeps the distance near 300 mm from high-pressure inlet. Comparing with the one-dimensional simplification result, the actual intensity of shock wave is lower. The difference between the fact and simplification increases with the rotational speed and expansion ratio. The internal mechanism has been analyzed from the aspect of intake mass. Then, the maximum shock wave intensity is found approximately linear to the intake mass of each rotor passage in each cycle.

References

1.
Hu
,
D.
,
Yu
,
Y.
,
Liu
,
P.
,
Wu
,
X.
, and
Zhao
,
Y.
,
2019
, “
Improving Refrigeration Performance by Using Pressure Exchange Characteristic of Wave Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022004
. 10.1115/1.4041722
2.
Liu
,
P.
,
Zhu
,
Y.
,
Wang
,
H.
,
Zhu
,
C.
,
Zou
,
J.
,
Wu
,
J.
, and
Hu
,
D.
,
2017
, “
Influence of the Nozzle Angle on Refrigeration Performance of a Gas Wave Refrigerator
,”
Shock Waves
,
27
(
3
), pp.
507
516
. 10.1007/s00193-016-0689-1
3.
Okamoto
,
K.
, and
Nagashima
,
T.
,
2007
, “
Visualization of Wave Rotor Inner Flow Dynamics
,”
J. Propul. Power
,
23
(
2
), pp.
292
300
. 10.2514/1.18439
4.
Kharazi
,
A.
,
Akbari
,
P.
, and
Müller
,
N.
,
2006
, “
Implementation of 3-Port Condensing Wave Rotors in R718 Cycles
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
325
334
. 10.1115/1.2131886
5.
Akbari
,
P.
,
Nalim
,
R.
, and
Müller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turb. Power
,
128
(
4
), pp.
717
735
. 10.1115/1.2204628
6.
Spalding
,
D. B.
,
1958
, “
A Note on Pressure Equalizers and Dividers
,”
Power Jets (Research and Development) Ltd., No. 2251/Px 3
.
7.
Gyarmathy
,
G.
,
1983
, “
How Does the Comprex Pressure-Wave SuperchargerWork?
,”
SAE Paper No. 830234
.
8.
Mayer
,
A.
,
Oda
,
J.
,
Kato
,
K.
,
Haase
,
W.
, and
Fried
,
R.
,
1989
,
“ExtrudedCeramic—A New Technology for the Comprex® Rotor,” SAE Paper No. 890453
.
9.
Weber
,
R.
,
1997
,
“A Pressure-Wave Machine with Integrated Constant-Volume Combustion,” Swiss Energy Research Report 1977–1997, National Foundation of Energy Research, Switzerland, Project No. 426
, pp.
142
153
.
10.
Matsutomi
,
Y.
,
Meyer
,
S.
,
Wijeyakulasuriya
,
S.
,
Izzy
,
Z.
,
Nalim
,
M.
,
Shimo
,
M.
,
Kowalkowski
,
M.
, and
Snyder
,
P. H.
,
2010
, “
Experimental Investigation on the Wave Rotor Constant Volume Combustor
,”
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Nashville, TN
,
July
.
11.
Nalim
,
M. R.
,
Li
,
H.
, and
Akbari
,
P.
,
2009
, “
Air-standard Aerothermodynamic Analysis of Gas Turbine Engines With Wave Rotor Combustion
,”
ASME J. Eng. Gas Turb. Power
,
131
(
5
), pp.
445
456
. 10.1115/1.3078790
12.
Dai
,
Y.
,
Hu
,
D.
, and
Ding
,
M.
,
2009
, “
Study on Wave Rotor Refrigerators
,”
Front. Chem. Eng. China
,
3
(
1
), pp.
83
87
. 10.1007/s11705-009-0075-y
13.
Hu
,
D.
,
Li
,
R.
,
Liu
,
P.
, and
Zhao
,
J.
,
2016
, “
The Design and Influence of Port Arrangement on an Improved Wave Rotor Refrigerator Performance
,”
Appl. Therm. Eng.
,
107
(
1
), pp.
207
217
. 10.1016/j.applthermaleng.2016.06.168
14.
Yuan
,
B.
,
2014
, “
Study on the Performance of Radial Over-Expanded Gas Wave Refrigerator
,”
Ph.D. thesis
,
Dalian University of Technology
,
Dalian, China
.
15.
Dai
,
Y.
,
Zou
,
J.
,
Zhu
,
C.
,
Liu
,
P.
,
Zhao
,
J.
,
Zhang
,
L.
, and
Hu
,
D.
,
2010
, “
Thermodynamic Analysis of Wave Rotor Refrigerators
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
2
), p.
021011
.10.1115/1.4002756
16.
Okamoto
,
K.
,
Nagashima
,
T.
, and
Yamaguchi
,
K.
,
2001
, “
Rotor-Wall Clearance Effects Upon Wave Rotor Passage Flow
,”
ISABE—International Symposium on Air Breathing Engines
,
Bangalore, India
,
September
.
17.
Araki
,
M.
,
Ishima
,
T.
,
Obokata
,
T.
,
Arai
,
M.
, and
Okamoto
,
K.
,
2007
, “
LDA Measurement of an Intermittent High-Speed Flow inside a Micro Wave Rotor Cell
,”
Proceedings of 2007 Fuels and Emissions Conference(CD-Rom)
,
SAE Paper 2007-01-0010
.
18.
Okamoto
,
K.
, and
Araki
,
M.
,
2008
, “
Shock Wave Observation in Narrow Tubes for a Parametric Study on Micro Wave Rotor Design
,”
J. Therm. Sci.
,
17
(
2
), pp.
134
140
. 10.1007/s11630-008-0134-6
19.
Kurec
,
K.
,
Piechna
,
J.
, and
Gumowski
,
K.
,
2017
, “
Investigations on Unsteady Flow Within a Stationary Passage of a Pressure Wave Exchanger, by Means of PIV Measurements and CFD Calculations
,”
J. Appl. Thermal Engineering.
,
112
(
1
), pp.
610
620
. 10.1016/j.applthermaleng.2016.10.142
20.
Dai
,
Y.
,
2010
, “
Principle Study and Experimental Investigation of Gas Wave Refrigeration by Aggregated Thermal Dissipation
,”
Ph.D. thesis
,
Dalian University of Technology
,
Dalian, China
.
21.
Zhao
,
J.
,
2013
, “
Studying on Gas Wave Refrigerator Enhancement by the Pressurize Characteristics of Shock Wave in Oscillation Tube
,”
Ph.D. thesis
,
Dalian University of Technology
,
Dalian, China
.
22.
Hu
,
D.
,
Yu
,
Y.
, and
Liu
,
P.
,
2018
, “
Enhancement of Refrigeration Performance by Energy Transfer of Shock Wave
,”
Appl. Therm. Eng.
,
130
(
1
), pp.
309
318
. 10.1016/j.applthermaleng.2017.11.040
You do not currently have access to this content.