Abstract

This study focuses on a thermodynamic performance analysis of a subcritical cascade refrigeration system (CRS) with internal heat exchangers (IHXs) using R41/R601, R41/R602A, and R41/cyclopentane as refrigerant pairs. The effect of evaporator temperature (Tev), condenser temperature (Tcond), and temperature difference in the cascade heat exchanger (ΔTCHX) on examined performance parameters are investigated. Each performance parameter is scrutinized by an optimum low-temperature circuit (LTC) condenser temperature. The operating parameters have some implications on the overall thermodynamic performance of the system. A change of 10 °C in the Tev and Tcond affects the performance of the system by approximately +26% and −8%, respectively. Moreover, a variation of 1 °C in the ΔTCHX reduces the performance of the system by about 2%. The effect of IHXs on the system has some interesting results. The coefficient of performance (COP) and exergy efficiency values of the system using R41/cyclopentane tend to constantly decrease by nearly 4.05%. Although not as much as R41/cyclopentane, there is also a slight drop in the performance of other refrigerant pairs. The discharge temperature in LTC and high-temperature circuit (HTC) compressors exceeds 120 °C for low-temperature refrigeration requirements, which is highly undesirable. Furthermore, the top priority components for the system improvement are HTC condenser, HTC compressor, and CHX. The refrigerant pairs with the thermodynamic performance from best to worst are R41/R601, R41/cyclopentane, and R41/R602A, respectively. Finally, the COP and exergy efficiency values of the modeled system are 10.40% higher and 3.06% lower, respectively, compared with current models in the literature.

References

1.
Mussati
,
S. F.
,
Morosuk
,
T.
, and
Mussati
,
M. C.
,
2020
, “
Superstructure-Based Optimization of Vapor Compression-Absorption Cascade Refrigeration Systems
,”
Entropy
,
22
(
4
), p.
428
. 10.3390/e22040428
2.
Llopis
,
R.
,
Sánchez
,
D.
,
Sanz-Kock
,
C.
,
Cabello
,
R.
, and
Torrella
,
E.
,
2015
, “
Energy and Environmental Comparison of Two-Stage Solutions for Commercial Refrigeration at Low Temperature: Fluids and Systems
,”
Appl. Energy
,
138
, pp.
133
142
. 10.1016/j.apenergy.2014.10.069
3.
Chung
,
H. S.
,
Jeong
,
H. M.
,
Kim
,
Y. G.
, and
Rahadiyan
,
L.
,
2005
, “
Temperature Characteristics of Cascade Refrigeration System by Pressure Adjustment
,”
J. Mech. Sci. Technol.
,
19
(
12
), pp.
2303
2311
. 10.1007/BF02916471
4.
Ouadha
,
A.
,
Haddad
,
C.
,
En-Nacer
,
M.
, and
Imine
,
O.
,
2007
, “
Performance Comparison of Cascade and Two-Stage Refrigeration Cycles Using Natural Refrigerants
,”
The 22nd International Congress of Refrigeration
,
Beijing, China
,
Aug. 21–26
,
pp.
1
9
.
5.
Andersen
SO
,
1999
, Report of the TEAP HFC and PFC Task Force, The Implications to the Montreal Protocol of the Inclusion of HFCs and PFCs in the Kyoto Protocol; October.
6.
Pan
,
M.
,
Zhao
,
H.
,
Liang
,
D.
,
Zhu
,
Y.
,
Liang
,
Y.
, and
Bao
,
G.
,
2020
, “
A Review of the Cascade Refrigeration System
,”
Energies
,
13
(
9
), pp.
2254
. 10.3390/en13092254
7.
Harby
,
K.
,
2017
, “
Hydrocarbons and Their Mixtures as Alternatives to Environmental Unfriendly Halogenated Refrigerants: An Updated Overview
,”
Renew. Sustain. Energy Rev.
,
73
, pp.
1247
1264
. 10.1016/j.rser.2017.02.039
8.
Kilic
,
B.
, and
Arabaci
,
E.
,
2018
, “
LPG (R1270-Propilen) Energy Analysis of Vapor Compression Refrigeration System Using LPG (R1270-Propylene) as Refrigerant
,”
J. Appl. Sci.
,
2
(
2
), pp.
75
81
. 10.31200/makuubd.448169
9.
Sun
,
Z.
,
Liang
,
Y.
,
Liu
,
S.
,
Ji
,
W.
,
Zang
,
R.
,
Liang
,
R.
, and
Guo
,
Z.
,
2016
, “
Comparative Analysis of Thermodynamic Performance of a Cascade Refrigeration System for Refrigerant Couples R41/R404A and R23/R404A
,”
Appl. Energy
,
184
, pp.
19
25
. 10.1016/j.apenergy.2016.10.014
10.
Mosaffa
,
A. H.
,
Farshi
,
L. G.
,
Ferreira
,
C. I.
, and
Rosen
,
M. A.
,
2016
, “
Exergoeconomic and Environmental Analyses of CO2/NH3 Cascade Refrigeration Systems Equipped With Different Types of Flash Tank Intercoolers
,”
Energy Convers. Manage.
,
117
, pp.
442
453
. 10.1016/j.enconman.2016.03.053
11.
Yilmaz
,
F.
, and
Selbas
,
R.
,
2017
, “
Energy and Exergy Analyses of CO2/HFE7000 Cascade Cooling System
,”
Nat. Appl. Sci.
,
21
(
3
), pp.
854
860
. 10.19113/sdufbed.58140
12.
Cabello
,
R.
,
Sánchez
,
D.
,
Llopis
,
R.
,
Catalán
,
J.
,
Nebot-Andrés
,
L.
, and
Torrella
,
E.
,
2016
, “
Energy Evaluation of R152a as Drop in Replacement for R134a in Cascade Refrigeration Plants
,”
Appl. Therm. Eng.
,
110
, pp.
972
984
. 10.1016/j.applthermaleng.2016.09.010
13.
Yilmaz
,
B.
,
Mancuhan
,
E.
, and
Erdonmez
,
N.
,
2018
, “
A Parametric Study on a Subcritical CO2/NH3 Cascade Refrigeration System for Low Temperature Applications
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092004
. 10.1115/1.4039976
14.
Sun
,
Z.
,
Wang
,
Q.
,
Xie
,
Z.
,
Liu
,
S.
,
Su
,
D.
, and
Cui
,
Q.
,
2019
, “
Energy and Exergy Analysis of Low GWP Refrigerants in Cascade Refrigeration System
,”
Energy
,
170
, pp.
1170
1180
. 10.1016/j.energy.2018.12.055
15.
Roy
,
R.
, and
Mandal
,
B. K.
,
2019
, “
Energetic and Exergetic Performance Comparison of Cascade Refrigeration System Using R170-R161 and R41-R404A as Refrigerant Pairs
,”
Heat Mass Transfer
,
55
(
3
), pp.
723
731
. 10.1007/s00231-018-2455-7
16.
Ranendra
,
R.
, and
Mandal
,
B. K.
,
2017
, “
Exergy Analysis of Cascade Refrigeration System Working With Refrigerant Pairs R41-R404A and R41-R161
,”
International Conference on Mechanical, Materials and Renewable Energy
,
Sikkim, India
,
Dec. 8–10
, Vol.
377
, pp.
1
6
.
17.
Yilmaz
,
D.
,
Sınar
,
U.
,
Ozyurt
,
A.
,
Yilmaz
,
B.
, and
Mancuhan
,
E.
,
2017
, “
Numerical Investigation of the Effects of Subcooling and Superheating on the System Performance of a Two Stage Refrigeration System Working in Ultra Low Temperatures
,”
J. Sci. Eng.
,
17
, pp.
1172
1180
.
18.
Roy
,
R.
, and
Mandal
,
B. K.
,
2019
, “
Thermo-Economic Analysis and Multi-Objective Optimization of Vapour Cascade Refrigeration System Using Different Refrigerant Combinations: A Comparative Study
,”
J. Therm. Anal. Calorim.
,
13
9(
5
), pp.
3247
3261
. 10.1007/s10973-019-08710-x
19.
Kumar
,
V.
,
Karimi
,
M. N.
, and
Kamboj
,
S. K.
,
2020
, “
Comparative Analysis of Cascade Refrigeration System Based on Energy and Exergy Using Different Refrigerant Pairs
,”
J. Therm. Eng.
,
6
(
1
), pp.
106
116
. 10.18186/thermal.671652
20.
Yilmaz
,
F.
, and
Selbaş
,
R.
,
2019
, “
Comparative Thermodynamic Performance Analysis of a Cascade System for Cooling and Heating Applications
,”
Int. J. Green Energy
,
16
(
9
), pp.
674
686
. 10.1080/15435075.2019.1618308
21.
Mancuhan
,
E.
,
Tunc
,
B.
,
Yetkin
,
K.
, and
Celik
,
C.
,
2019
, “
Comparative Analysis of Cascade Refrigeration Systems’ Performance and Enviromental Impacts
,”
J. Turk. Chem. Soc., Sect. B
,
2
(
2
), pp.
97
108
.
22.
Dikmen
,
E.
,
Sahin
,
A. S.
,
Deveci
,
O. I.
, and
Akdag
,
E.
,
2020
, “
Comparative Performance Analysis of Cascade Refrigeration System Using Low GWP Refrigerants
,”
El-Cezeri J. Sci. Eng.
,
7
(
1
), pp.
338
345
. 10.31202/ecjse.630262
23.
Logesh
,
K.
,
Baskar
,
S.
,
Azeemudeen
,
M.
,
Praveen Reddy
,
B.
, and
Jayanth
,
G. V. S. S.
,
2019
, “
Analysis of Cascade Vapour Refrigeration System With Various Refrigerants
,”
Mater. Today: Proc.
,
18
, pp.
4659
4664
. 10.1016/j.matpr.2019.07.450
24.
Zhang
,
Y.
,
He
,
Y.
,
Wang
,
Y.
,
Wu
,
X.
,
Jia
,
M.
, and
Gong
,
Y.
,
2020
, “
Experimental Investigation of the Performance of an R1270/CO2 Cascade Refrigerant System
,”
Int. J. Refrig.
,
114
, pp.
175
180
. 10.1016/j.ijrefrig.2020.02.017
25.
Massuchetto
,
L. H. P.
,
do Nascimento
,
R. B. C.
,
de Carvalho
,
S. M. R.
,
de Araújo
,
H. V.
, and
Angelo
,
J. V. H.
,
2019
, “
Thermodynamic Performance Evaluation of a Cascade Refrigeration System With Mixed Refrigerants: R744/R1270, R744/R717 and R744/RE170
,”
Int. J. Refrig.
,
106
, pp.
201
212
. 10.1016/j.ijrefrig.2019.07.005
26.
Keshtkar
,
M. M.
,
2019
, “
Multi-Objective Optimization of a R744/R134a Cascade Refrigeration System: Exergetic, Economic, Environmental, and Sensitive Analysis (3ES)
,”
J. Therm. Eng.
,
5
(
4
), pp.
237
250
. 10.18186/thermal.581750
27.
Gholamian
,
E.
,
Hanafizadeh
,
P.
, and
Ahmadi
,
P.
,
2018
, “
Advanced Exergy Analysis of a Carbon Dioxide Ammonia Cascade Refrigeration System
,”
Appl. Therm. Eng.
,
137
, pp.
689
699
. 10.1016/j.applthermaleng.2018.03.055
28.
Queiroz
,
M. V. A.
,
Panato
,
V. H.
,
Antunes
,
A. H. P.
,
Parise
,
J. A. R.
, and
Bandarra Filho
,
E. P.
,
2016
, “
Experimental Comparison of a Cascade Refrigeration System Operating With R744/R134a and R744/R404a
,”
International Refrigeration Air Conditioning Conference
,
Purdue
,
July 11–14
, pp.
1
10
.
29.
Gami
,
H. M.
, and
Aijaz
,
M. A.
,
2014
, “
Thermodynamic Analysis of Cascade Refrigeration System Using Refrigerants Pairs R134a-R23 and R290-R23
,”
Int. J. Eng. Sci. Res. Technol.
,
3
(
4
), pp.
6034
6040
.
30.
Lee
,
T. S.
,
Liu
,
C. H.
, and
Chen
,
T. W.
,
2006
, “
Thermodynamic Analysis of Optimal Condensing Temperature of Cascade-Condenser in CO2/NH3 Cascade Refrigeration Systems
,”
Int. J. Refrig.
,
29
(
7
), pp.
1100
1108
. 10.1016/j.ijrefrig.2006.03.003
31.
Kilicarslan
,
A.
, and
Hosoz
,
M.
,
2010
, “
Energy and Irreversibility Analysis of a Cascade Refrigeration System for Various Refrigerant Couples
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2947
2954
. 10.1016/j.enconman.2010.06.037
32.
Ust
,
Y.
, and
Karakurt
,
A. S.
,
2014
, “
Analysis of a Cascade Refrigeration System (CRS) by Using Different Refrigerant Couples Based on the Exergetic Performance Coefficient (EPC) Criterion
,”
Arabian J. Sci. Eng.
,
39
(
11
), pp.
8147
8156
. 10.1007/s13369-014-1335-9
33.
Sarkar
,
J.
,
Bhattacharyya
,
S.
, and
Lal
,
A.
,
2013
, “
Performance Comparison of Natural Refrigerants Based Cascade Systems for Ultra-Low-Temperature Applications
,”
Int. J. Sustain. Energy
,
32
(
5
), pp.
406
420
. 10.1080/14786451.2013.765426
34.
Niu
,
B.
, and
Zhang
,
Y.
,
2007
, “
Experimental Study of the Refrigeration Cycle Performance for the R744/R290 Mixtures
,”
Int. J. Refrig.
,
30
(
1
), pp.
37
42
. 10.1016/j.ijrefrig.2006.06.002
35.
Sobieraj
,
M.
, and
Rosiński
,
M.
,
2019
, “
Experimental Study of the Heat Transfer in R744/R600a Mixtures Below the R744 Triple Point Temperature
,”
Int. J. Refrig.
,
103
, pp.
243
252
. 10.1016/j.ijrefrig.2019.03.038
36.
Lemmon
,
E. W.
, and
Span
,
R.
,
2006
, “
Short Fundamental Equations of State for 20 Industrial Fluids
,”
J. Chem. Eng. Data
,
51
(
3
), pp.
785
850
. 10.1021/je050186n
37.
Mota-Babiloni
,
A.
,
Navarro-Esbrí
,
J.
,
Barragán-Cervera
,
Á
,
Molés
,
F.
, and
Peri
,
B.
,
2015
, “
Drop-in Analysis of an Internal Heat Exchanger in a Vapour Compression System Using R1234ze(E) and R450A as Alternatives for R134a
,”
Energy
,
90
(
Part 2
), pp.
1636
1644
. 10.1016/j.energy.2015.06.133
38.
Saleh
,
B.
,
2018
, “
Energy and Exergy Analysis of an Integrated Organic Rankine Cycle-Vapor Compression Refrigeration System
,”
Appl. Therm. Eng.
,
141
, pp.
697
710
. 10.1016/j.applthermaleng.2018.06.018
39.
Restrepo
,
G.
,
Weckert
,
M.
,
Brüggemann
,
R.
,
Gerstmann
,
S.
, and
Frank
,
H.
,
2008
, “
Ranking of Refrigerants
,”
Environ. Sci. Technol.
,
42
(
8
), pp.
2925
2930
. 10.1021/es7026289
40.
Tsuda
,
N.
,
Yoshizawa
,
M.
, and
Iwai
,
H.
,
2019
, “
Comparison of Flammability of Low-GWP Refrigerants Using 1.76-m3 Combustion Chamber
,”
Combust. Sci. Technol.
, pp.
1
13
. 10.1080/00102202.2019.1669573
41.
Fábrega
,
F. M.
,
Rossi
,
J. S.
, and
d'Angelo
,
J. V. H.
,
2010
, “
Exergetic Analysis of the Refrigeration System in Ethylene and Propylene Production Process
,”
Energy
,
35
(
3
), pp.
1224
1231
. 10.1016/j.energy.2009.11.001
42.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2017
,
Thermodynamics: An Engineering Approach
, 6th ed.,
The McGraw-Hill Companies, Inc
,
New York
.
43.
Sawalha
,
S.
,
Suleymani
,
A.
, and
Rogstam
,
J.
,
2006
, “
CO2 in Supermarket Refrigeration, CO2 Project Report Phase I, KTH Energy Technology
,” Available from: www.energy.kth.se.
44.
Alberto Dopazo
,
J
,
Fernández-Seara
,
J.
,
Sieres
,
J.
, and
Uhía
,
F. J.
,
2009
, “
Theoretical Analysis of a CO2–NH3 Cascade Refrigeration System for Cooling Applications at Low Temperatures
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1577
1583
. 10.1016/j.applthermaleng.2008.07.006
45.
Messineo
,
A.
, and
Panno
,
D.
,
2012
, “
Performance Evaluation of Cascade Refrıgeration Systems Using Different Refrigerants
,”
Int. J. Air-Cond. Refrig.
,
20
(
3
), pp.
1
8
. 10.1142/S2010132512500101
46.
Sun
,
Z.
,
Wang
,
Q.
,
Dai
,
B.
,
Wang
,
M.
, and
Xie
,
Z.
,
2019
, “
Options of Low Global Warming Potential Refrigerant Group for a Three-Stage Cascade Refrigeration System
,”
Int. J. Refrig.
,
100
, pp.
471
483
. 10.1016/j.ijrefrig.2018.12.019
You do not currently have access to this content.