Abstract

Dense solid–gas bubbling systems with combined fluid-particle motion are among one of the most extensively used fluidization forms used in the chemical industry. Therefore, it is important to have a good understanding of the hydrodynamic behavior of bubbles. In this paper, both the experiment and numerical simulations are used to investigate the flow patterns in a spouted bed. For numerical simulations, the bidirectional coupling simulations using computational fluid dynamics (CFD) with discrete element method (DEM) are conducted. The results show that the simulations can accurately predict the bubbles morphology compared with the experimental results. When the number of particles is 30,000, only a single core-annular flow pattern appears. When the number of particles is increased to 36,500, the single bubble in the spouted bed transitions into two and a double core-annular flow pattern emerges. As the number of particles is increased to 43,000, a complex multicore-annular flow pattern appears. These flow patterns are also observed in the experiments using high-speed imaging camera. This paper analyzes and explains the causes of these flow phenomena from the dynamic characteristics of particle phase and fluid phase. These results have great significance in providing guidance for optimization of dense phase bubbling spouted beds.

References

1.
Ostermeier
,
P.
,
Vandersickel
,
A.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2019
, “
Numerical Approaches for Modeling Gas-Solid Fluidized Bed Reactors: Comparison of Models and Application to Different Technical Problems
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070707
. 10.1115/1.4043327
2.
Simanjuntak
,
J. P.
,
Al-attab
,
K. A.
, and
Zainal
,
Z. A.
,
2019
, “
Hydrodynamic Flow Characteristics in an Internally Circulating Fluidized Bed Gasifier
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032001
. 10.1115/1.4041092
3.
Bai
,
L.
,
Shi
,
W.
,
Zhou
,
L.
,
Zhang
,
L.
,
Li
,
W.
, and
Agarwal
,
R.
,
2018
, “
Experimental Study of Transient Hydrodynamics in a Spouted Bed of Polydisperse Particles
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082206
. 10.1115/1.4039614
4.
Capes
,
C. E.
, and
Nakamura
,
K.
,
1973
, “
Vertical Pneumatic Conveying: A Theoretical Study of Uniform and Annular Particle Flow Models
,”
Can. J. Chem. Eng.
,
51
(
1
), pp.
39
46
. 10.1002/cjce.5450510107
5.
Bai
,
D.
,
Zhu
,
J.-X.
,
Jin
,
Y.
, and
Yu
,
Z.
,
1995
, “
Internal Recirculation Flow Structure in Vertical Upflow Gas-Solids Suspensions Part I. A Core-Annulus Model
,”
Powder Technol.
,
85
(
2
), pp.
171
177
. 10.1016/0032-5910(95)03010-7
6.
Berruti
,
F.
, and
Kalogerakis
,
N.
,
2010
, “
Modelling the Internal Flow Structure of Circulating Fluidized Beds
,”
Can. J. Chem. Eng.
,
67
(
6
), pp.
1010
1014
. 10.1002/cjce.5450670621
7.
Namkung
,
W.
, and
Kim
,
S. D.
,
2000
, “
Radial Gas Mixing in a Circulating Fluidized Bed
,”
Powder Technol.
,
113
(
1–2
), pp.
23
29
. 10.1016/S0032-5910(99)00288-0
8.
Bi
,
H.
,
Jiang
,
P.
,
Jean
,
R.-H.
, and
Fan
,
L.-S.
,
1992
, “
Coarse-Particle Effects in a Multisolid Circulating Fluidized Bed for Catalytic Reactions
,”
Chem. Eng. Sci.
,
47
(
12
), pp.
3113
3124
. 10.1016/0009-2509(92)87011-E
9.
Pandey
,
K. M.
, and
Ray
,
M.
,
2010
, “
Experimental Studies on Hydrodynamics of a Cyclone Separator Employed in a Circulating Fluidized Bed
,”
Int. J. Chem. Eng. Appl.
,
1
(
2
), pp.
123
131
. 10.7763/IJCEA.2010.V1.21
10.
Rhodes
,
M. J.
,
1990
, “
Modelling the Flow Structure of Upward-Flowing Gas-Solids Suspensions
,”
Powder Technol.
,
60
(
1
), pp.
27
38
. 10.1016/0032-5910(90)80101-4
11.
Senior
,
R. C.
, and
Brereton
,
C.
,
1992
, “
Modelling of Circulating Fluidized-Bed Solids Flow and Distribution
,”
Chem. Eng. Sci.
,
47
(
2
), pp.
281
296
. 10.1016/0009-2509(92)80020-D
12.
Horio
,
M.
,
Morishita
,
K.
,
Tachibana
,
O.
, and
Murata
,
N.
,
1988
, “
Solid Distribution and Movement in Circulating Fluidized Beds
,”
Proceedings of the Second International Conference on Circulating Fluidized Bed
,
France, Compiégne
,
Mar. 14–18
.
13.
Nichols
,
R. J.
,
Sparks
,
R. S. J.
, and
Wilson
,
C. J. N.
,
1994
, “
Experimental Studies of the Fluidization of Layered Sediments and the Formation of Fluid Escape Structures
,”
Sedimentology
,
41
(
2
), pp.
233
253
. 10.1111/j.1365-3091.1994.tb01403.x
14.
Ishii
,
H.
,
Nakajima
,
T.
, and
Horio
,
M.
,
1989
, “
The Clustering Annular Flow Model of Circulating Fluidized Beds
,”
J. Chem. Eng. Jpn.
,
22
(
5
), pp.
484
490
. 10.1252/jcej.22.484
15.
Xu
,
Y.
,
Musser
,
J.
,
Li
,
T.
,
Gopalan
,
B.
,
Panday
,
R.
,
Tucker
,
J.
,
Breault
,
G.
,
Clarke
,
M. A.
, and
Rogers
,
W. A.
,
2018
, “
Numerical Simulation and Experimental Study of the Gas-Solid Flow Behavior Inside a Full-Loop Circulating Fluidized Bed: Evaluation of Different Drag Models
,”
Ind. Eng. Chem. Res.
,
57
(
2
), pp.
740
750
. 10.1021/acs.iecr.7b03817
16.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic Press
,
New York
.
17.
Zhou
,
L.
,
Deshpande
,
K.
,
Zhang
,
X.
, and
Agarwal
,
R.
,
2020
, “
Process Simulation of Chemical Looping Combustion Using ASPEN Plus for a Mixture of Biomass and Coal With Various Oxygen Carriers
,”
Energy
,
195
, p.
116955
. 10.1016/j.energy.2020.116955
18.
Montante
,
G.
,
Micale
,
G.
,
Magelli
,
F.
, and
Brucato
,
A.
,
2001
, “
Experiments and CFD Predictions of Solid Particle Distribution in a Vessel Agitated With Four Pitched Blade Turbines
,”
Chem. Eng. Res. Des.
,
79
(
8
), pp.
1005
1010
. 10.1205/02638760152721253
19.
Hosseini
,
S.
,
Patel
,
D.
,
Ein-Mozaffari
,
F.
, and
Mehrvar
,
M.
,
2010
, “
Study of Solid-Liquid Mixing in Agitated Tanks Through Computational Fluid Dynamics Modeling
,”
Ind. Eng. Chem. Res.
,
49
(
9
), pp.
4426
4435
. 10.1021/ie901130z
20.
El-Emam
,
M.
,
Shi
,
W.
, and
Zhou
,
L.
,
2019
, “
CFD-DEM Simulation and Optimization of Gas-Cyclone Performance With Realistic Macroscopic Particulate Matter
,”
Adv. Powder Technol.
,
31
(
11
), pp.
2686
2702
. 10.1016/j.apt.2019.08.015
21.
Rassias
,
J. M.
,
1994
,
Geometry, Analysis and Mechanics
,
World Scientific Publishing Co., Inc.
,
River Edge, NJ
, pp.
275
285
.
22.
Agrawal
,
O. P.
,
2002
, “
Formulation of Euler–Lagrange Equations for Fractional Variational Problems
,”
J. Math. Anal. Appl.
,
272
(
1
), pp.
368
379
. 10.1016/S0022-247X(02)00180-4
23.
Oevermann
,
M.
,
Gerber
,
S.
, and
Behrendt
,
F.
,
2009
, “
Euler–Lagrange/DEM Simulation of Wood Gasification in a Bubbling Fluidized Bed Reactor
,”
Particuology
,
7
(
4
), pp.
307
316
. 10.1016/j.partic.2009.04.004
24.
Almohammed
,
N.
,
Alobaid
,
F.
,
Breuer
,
M.
, and
Epple
,
B.
,
2014
, “
A Comparative Study on the Influence of the Gas Flow Rate on the Hydrodynamics of a Gas–Solid Spouted Fluidized Bed Using Euler–Euler and Euler–Lagrange/DEM Models
,”
Powder Technol.
,
264
, pp.
343
364
. 10.1016/j.powtec.2014.05.024
25.
ESSS-Rocky
,
2018
,
Rocky-Dem DEM-CFD Coupling Technical Manual
,
A.
Rocky
, ed., Model Used Rocky, 4.3,
ESSS
,
Rio de Janeiro, Brazil
, pp.
3
11
.
26.
Zhong
,
W.
,
Xiong
,
Y.
,
Yuan
,
Z.
, and
Zhang
,
M.
,
2006
, “
DEM Simulation of Gas-Solid Flow Behaviors in Spout-Fluid Bed
,”
Chem. Eng. Sci.
,
61
(
5
), pp.
1571
1584
. 10.1016/j.ces.2005.09.015
27.
Yang
,
J.
,
Low
,
Y. M.
,
Lee
,
C.-H.
, and
Chiew
,
Y.-M.
,
2018
, “
Numerical Simulation of Scour Around a Submarine Pipeline Using Computational Fluid Dynamics and Discrete Element Method
,”
Appl. Math. Model.
,
55
, pp.
400
416
. 10.1016/j.apm.2017.10.007
28.
Walton
,
O. R.
, and
Braun
,
R. L.
,
1986
, “
Stress Calculations for Assemblies of Inelastic Sprees in Uniform Shear
,”
Acta Mech.
,
63
(
1–4
), pp.
73
86
. 10.1007/BF01182541
29.
Bathurst
,
R. J.
, and
Rothenburg
,
L.
,
1988
, “
Micromechanical Aspects of Isotropic Granular Assemblies With Linear Contact Interactions
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
17
23
. 10.1115/1.3173626
30.
Walton
,
O. R.
,
1993
, “
Numerical Simulation of Inclined Chute Flows of Monodisperse, Inelastic, Frictional Spheres
,”
Mech. Mater.
,
16
(
1–2
), pp.
239
247
. 10.1016/0167-6636(93)90048-V
31.
Walton
,
O. R.
,
1995
,
Force Models for Particle-Dynamics Simulations of Granular Materials
,
Mobile Particulate Systems, Springer
,
Netherlands
, pp.
367
380
.
32.
Walton
,
O. R.
, and
Braun
,
R. L.
,
1998
, “
Viscosity, Granular-Temperature, and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disks
,”
J. Rheol.
,
30
(
5
), pp.
949
980
. 10.1122/1.549893
33.
Ai
,
J.
,
Chen
,
J.-F.
,
Rotter
,
J. M.
, and
Ooi
,
J. Y.
,
2011
, “
Assessment of Rolling Resistance Models in Discrete Element Simulations
,”
Powder Technol.
,
206
(
3
), pp.
269
282
. 10.1016/j.powtec.2010.09.030
34.
Wensrich
,
C. M.
, and
Katterfeld
,
A.
,
2012
, “
Rolling Friction as a Technique for Modelling Particle Shape in DEM
,”
Powder Technol.
,
217
(
2
), pp.
409
417
. 10.1016/j.powtec.2011.10.057
35.
Willis
,
J. R.
,
Robbins
,
M. M.
, and
Thompson
,
M.
,
June
2015
,
NCAT Report 14-07
,
Auburn University
,
Auburn, AL
.
36.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
,
1992
, “
Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach
,”
Proceedings of the 7th Engineering Foundation Conference on Fluidization
,
Gold Coast, Australia
,
May 3–8
, pp.
75
82
.
37.
Wen
,
Y. C.
, and
Yu
,
Y. H.
,
1966
, “
Mechanics of Fluidization
,”
Chem. Eng. Prog. Symp. Ser.
,
62
, pp.
100
111
.
38.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
39.
Zhou
,
L.
,
Zhang
,
L.
,
Bai
,
L.
,
Shi
,
W.
,
Li
,
W.
,
Wang
,
C.
, and
Agarwal
,
R.
,
2017
, “
Experimental Study and Transient CFD/DEM Simulation in a Fluidized Bed Based on Different Drag Models
,”
RSC Adv.
,
7
(
21
), pp.
12764
12774
. 10.1039/C6RA28615A
40.
Li
,
W.
,
Li
,
E.
,
Ji
,
L.
,
Zhou
,
L.
,
Shi
,
W.
, and
Zhu
,
Y.
,
2020
, “
Mechanism and Propagation Characteristics of Rotating Stall in a Mixed-Flow Pump
,”
Renew. Energy
,
153
, pp.
74
92
. 10.1016/j.renene.2020.02.003
41.
Zhou
,
L.
,
Zhang
,
L.
,
Shi
,
W.
,
Agarwal
,
R.
, and
Li
,
W.
,
2018
, “
Transient Computational Fluid Dynamics/Discrete Element Method Simulation of Gas–Solid Flow in a Spouted Bed and Its Validation by High-Speed Imaging Experiment
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012206
. 10.1115/1.4037685
42.
Yang
,
M.
,
Banerjee
,
S.
, and
Agarwal
,
K.
,
2018
, “
Transient Cold Flow Simulation of Fast Fluidized Bed Fuel Reactors for Chemical-Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112203
. 10.1115/1.4039415
43.
Kuipers
,
J. A. M.
,
Prins
,
W.
, and
Van Swaaij
,
W. P. M.
,
1991
, “
Theoretical and Experimental Bubble Formation at a Single Orifice in a Two-Dimensional Gas-Fluidized Bed
,”
Chem. Eng. Sci.
,
46
(
11
), pp.
2881
2894
. 10.1016/0009-2509(91)85157-S
44.
Peters
,
M. H.
,
Fan
,
L. S.
, and
Sweeney
,
T. L.
,
1983
, “
Study of Particle Ejections in the Freeboard Region of a Fluidized Bed With an Image Carrying Probe
,”
Chem. Eng. Sci.
,
38
(
3
), pp.
481
485
. 10.1016/0009-2509(83)80168-7
You do not currently have access to this content.