Abstract

Boiling flows are an extremely efficient mechanism for the transfer of ultrahigh heat fluxes and used in numerous industrial applications. In this paper, the accuracy of computational fluid dynamics in predicting the temperature distributions and heat transfer performance is examined within a nuclear fusion reactor divertor. The aim is to establish the role of computational fluid dynamics (CFD) within the design of complicated high heat flux components using a semi-mechanistic approach to flow boiling that is independent of geometry and flow conditions. An Eulerian–Eulerian two-fluid method is developed and a conjugate heat transfer model is validated against the existing experimental data where available. Overall, a satisfactory accuracy is achieved in the prediction of several important quantities. Temperature distribution throughout the divertor is found to be highly accurate and aligns with the physical testing across two expected operating regimes. Additionally, the system heat transfer coefficients and coolant temperatures are close to the assumptions already established within the literature. Heat transfer enhancement is a critical component of the divertor design, and a twisted-tape insert appears to be necessary for the system to withstand ultrahigh heat fluxes encountered within the fusion reactor. The results show that the inclusion of a twisted tape improved the heat transfer coefficient of the system by almost 45% allowing the divertor to withstand the required heat fluxes of 10 MW/m2 and 20 MW/m2.

References

1.
Wong
,
K. V.
, and
Dia
,
S.
,
2017
, “
Developments in Nuclear Power and Radioactive Waste Management
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062001
. 10.1115/1.4037205
2.
U.S. Energy Information Administration
,
2019
, “
International Energy Outlook 2019 with Projections to 2050
,”
EIA Report No. #IEO2019
.
3.
International Energy Agency
,
2015
,
Key World Energy Statistics 2015
,
OECD
,
Paris, France
. 10.1787/key_energ_stat-2015-en
4.
Claessens
,
M.
,
2020
,
ITER: The Giant Fusion Reactor
,
Springer International Publishing
,
Cham, Switzerland
.
5.
Dobran
,
F.
,
2012
, “
Fusion Energy Conversion in Magnetically Confined Plasma Reactors
,”
Prog. Nucl. Energy
,
60
, pp.
89
116
. 10.1016/j.pnucene.2012.05.008
6.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-fluid Dynamics of Two-Phase Flow
, 2nd ed.,
Springer
,
New York
.
7.
Mohanty
,
R. L.
, and
Das
,
M. K.
,
2017
, “
A Critical Review on Bubble Dynamics Parameters Influencing Boiling Heat Transfer
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
466
494
. 10.1016/j.rser.2017.04.092
8.
Hirai
,
T.
,
Escourbiac
,
F.
,
Carpentier-Chouchana
,
S.
,
Fedosov
,
A.
,
Ferrand
,
L.
,
Jokinen
,
T.
,
Komarov
,
V.
,
Kukushkin
,
A.
,
Merola
,
M.
,
Mitteau
,
R.
,
Pitts
,
R. A.
,
Shu
,
W.
,
Sugihara
,
M.
,
Riccardi
,
B.
,
Suzuki
,
S.
, and
Villari
,
R.
,
2013
, “
ITER Tungsten Divertor Design Development and Qualification Program
,”
Fusion Eng. Des.
,
88
(
9–10
), pp.
1798
1801
. 10.1016/j.fusengdes.2013.05.010
9.
Natalizio
,
A.
,
Collen
,
J.
, and
Vieider
,
G.
,
1997
, “
Cooling System Design Options for a Fusion Reactor 1
,”
J. Fusion Energy
,
16
(
12
), pp.
0
4
.
10.
Brezinsek
,
S.
,
2015
, “
Plasma-Surface Interaction in the Be/W Environment: Conclusions Drawn from the JET-ILW for ITER, JET-EFDA Contributors
J. Nucl. Mater.
,
463
,
11
21
.
11.
Gunn
,
J. P.
,
Carpentier-Chouchana
,
S.
,
Dejarnac
,
R.
,
Escourbiac
,
F.
,
Hirai
,
T.
,
Komm
,
M.
,
Kukushkin
,
A.
,
Panayotis
,
S.
, and
Pitts
,
R. A.
,
2017
, “
Ion Orbit Modelling of ELM Heat Loads on ITER Divertor Vertical Targets
,”
Nucl. Mater. Energy
,
12
, pp.
75
83
. 10.1016/j.nme.2016.10.005
12.
Raffray
,
A. R.
,
Schlosser
,
J.
,
Akiba
,
M.
,
Araki
,
M.
,
Chiocchio
,
S.
,
Driemeyer
,
D.
,
Escourbiac
,
F.
,
Grigoriev
,
S.
,
Merola
,
M.
,
Tivey
,
R.
,
Vieider
,
G.
, and
Youchison
,
D.
,
1999
, “
Critical Heat Flux Analysis and R&D for the Design of the ITER Divertor
,”
Fusion Eng. Des.
,
45
(
4
), pp.
377
407
. 10.1016/S0920-3796(99)00053-8
13.
Zagórski
,
R.
,
Pericoli
,
V.
, and
Telesca
,
G.
,
2011
, “
Integrated Modeling of ITER Scenarious With Carbon and Tungsten Walls
,”
J. Nucl. Mater
,
415
(
1
), pp.
S483
S487
. 10.1016/j.jnucmat.2010.08.038
14.
Krepper
,
E.
,
Končar
,
B.
, and
Egorov
,
Y.
,
2007
, “
CFD Modelling of Subcooled Boiling-Concept, Validation and Application to Fuel Assembly Design
,”
Nucl. Eng. Des.
,
237
(
7
), pp.
716
731
. 10.1016/j.nucengdes.2006.10.023
15.
Langari
,
M.
,
Yang
,
Z.
,
Dunne
,
J. F.
,
Jafari
,
S.
,
Pirault
,
J. P.
,
Long
,
C. A.
, and
Thalackottore Jose
,
J.
,
2018
, “
Conjugate Heat Transfer Predictions for Subcooled Boiling Flow in a Horizontal Channel Using a Volume-of-Fluid Framework
,”
ASME J. Heat Transfer
,
140
(
10
), p.
104501
. 10.1115/1.4040358
16.
Colombo
,
M.
, and
Fairweather
,
M.
,
2016
, “
Accuracy of Eulerian–Eulerian, Two-Fluid CFD Boiling Models of Subcooled Boiling Flows
,”
Int. J. Heat Mass Transf.
,
103
, pp.
28
44
. 10.1016/j.ijheatmasstransfer.2016.06.098
17.
Koski
,
J. A.
,
Watson
,
R. D.
,
Hassanein
,
A. M.
,
Goranson
,
P. L.
, and
Salmonson
,
J. C.
,
2017
, “
Thermal-Hydraulic Design Issues and Analysis for the ITER Divertor
,”
J. Fusion Techol
,
19
(
3P2B
), pp.
1729
1735
. 10.13182/FST91-A29591
18.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
Clarendon Press
,
Oxford, UK
.
19.
Rohsenow
,
W. M.
,
1951
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
The Office of Naval Research, Technical Report No. 5
.
20.
Sanna
,
A.
,
Hutter
,
C.
,
Kenning
,
D. B. R.
,
Karayiannis
,
T. G.
,
Sefiane
,
K.
, and
Nelson
,
R. A.
,
2014
, “
Numerical Investigation of Nucleate Boiling Heat Transfer on Thin Substrates
,”
Int. J. Heat Mass Transf.
,
76
, pp.
45
64
. 10.1016/j.ijheatmasstransfer.2014.04.026
21.
Chen
,
D.
,
Pan
,
L. M.
, and
Ren
,
S.
,
2012
, “
Prediction of Bubble Detachment Diameter in Flow Boiling Based on Force Analysis
,”
Nucl. Eng. Des.
,
243
, pp.
263
271
. 10.1016/j.nucengdes.2011.11.022
22.
Banerjee
,
S.
, and
Agarwal
,
R. K.
,
2016
, “
An Eulerian Approach to Computational Fluid Dynamics Simulation of a Chemical-Looping Combustion Reactor With Chemical Reactions
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042201
. 10.1115/1.4031968
23.
Ostermeier
,
P.
,
Vandersickel
,
A.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2019
, “
Numerical Approaches for Modeling Gas-Solid Fluidized Bed Reactors: Comparison of Models and Application to Different Technical Problems
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), pp.
1
10
.
24.
Yang
,
M.
,
Banerjee
,
S.
, and
Agarwal
,
R. K.
,
2018
, “
Transient Cold Flow Simulation of Fast Fluidized Bed Fuel Reactors for Chemical-Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112203
. 10.1115/1.4039415
25.
Drew
,
D. A.
, and
Passman
,
S. L.
,
1999
,
Theory of Multicomponent Fluids
,
Springer New York
,
New York, NY
.
26.
Podowski
,
M. Z.
, and
Podowski
,
R. M.
,
2009
, “
Mechanistic Multidimensional Modeling of Forced Convection Boiling Heat Transfer
,”
Sci. Technol. Nucl. Install.
,
2009
, pp.
1
10
. 10.1155/2009/387020
27.
Hoang
,
N. H.
,
Chu
,
I. C.
,
Euh
,
D. J.
, and
Song
,
C. H.
,
2016
, “
A Mechanistic Model for Predicting the Maximum Diameter of Vapor Bubbles in a Subcooled Boiling Flow
,”
Int. J. Heat Mass Transf.
,
94
, pp.
174
179
. 10.1016/j.ijheatmasstransfer.2015.11.051
28.
Bartolomei
,
G.
, and
Chanturia
,
V. M.
,
1967
, “
Experimental Study of True Void Fraction When Boiling Subcooled Water in Vertical Tubes
,”
Teploenergetika
,
14
(
2
), pp.
123
128
.
29.
Bartolomei
,
G. G.
,
Brantov
,
V. G.
,
Molochnikov
,
Y. S.
,
Kharitonov
,
Y. V.
,
Solodkii
,
V. A.
,
Batashova
,
G. N.
, and
Mikhailov
,
V. N.
,
1982
, “
An Experimental Investigation of True Volumetric Vapor Content With Subcooled Boiling in Tubes
,”
Teploenergetika
,
29
(
3
), pp.
132
135
.
30.
Lemmert
,
M.
, and
Chawla
,
J. M.
,
1977
,
Heat Transfer in Boiling
,
E.
Hahne
, and
U.
Grigull
, eds.,
Academic Press and Hemisphere
,
New York, NY
, pp.
237
247
.
31.
Hibiki
,
T.
, and
Ishii
,
M.
,
2003
, “
Active Nucleation Site Density in Boiling Systems
,”
Int. J. Heat Mass Transf.
,
46
(
14
), pp.
2587
2601
. 10.1016/S0017-9310(03)00031-0
32.
Cole
,
R.
,
1960
, “
A Photographic Study of Pool Boiling in the Region of the Critical Heat Flux
,”
AIChE J.
,
6
(
4
), pp.
533
538
. 10.1002/aic.690060405
33.
Tolubinsky
,
V. I.
, and
Kostanchuk
,
D. M.
,
1970
, “
Vapour Bubbles Growth Rate and Heat Transfer Intensity at Subcooled Water Boiling
,”
4th International Heat Transfer Conference
,
5
, pp.
1
11
. 10.1615/IHTC4.250
34.
Kocamustafaogullari
,
G.
,
1983
, “
Pressure Dependence of Bubble Departure Diameter for Water
,”
Int. Commun. Heat Mass Transf.
,
10
(
6
), pp.
501
509
. 10.1016/0735-1933(83)90057-X
35.
Yun
,
B. J.
,
Splawski
,
A.
,
Lo
,
S.
, and
Song
,
C. H.
,
2012
, “
Prediction of a Subcooled Boiling Flow with Advanced Two-Phase Flow Models
,”
Nucl. Eng. Des.
,
253
, pp.
351
359
. 10.1016/j.nucengdes.2011.08.067
36.
Končar
,
B.
, and
Tiselj
,
I.
,
2010
, “
Influence of Near-Wall Modelling on Boiling Flow Simulation
,”
Nucl. Eng. Des.
,
240
(
2
), pp.
275
283
. 10.1016/j.nucengdes.2008.07.019
37.
Bergles
,
A. E.
,
2003
, “
High-Flux Processes Through Enhanced Heat Transfer
,”
5th International Conference on Boiling and Condensation Heat Transfer
,
Montego Bay, Jamaica
,
May 4–8
, pp.
1
13
.
38.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2003
, “
Swirl Flow Heat Transfer and Pressure Drop with Twisted-Tape Inserts
,”
Adv. Heat Transf.
,
36
(
C
), pp.
183
266
. 10.1016/S0065-2717(02)80007-7
39.
Giniyatullin
,
A. A.
, and
Tarasevich
,
S. E.
,
2013
, “
CFD Modelling of Subcooled Boiling in Tubes With Twisted Tape Insert
,”
Fluids Engineering Division Summer Meeting, FEDSM
,
American Society of Mechanical Engineers
,
New York
.
40.
Liu
,
P.
,
Peng
,
X. B.
,
Song
,
Y. T.
, and
Mao
,
X.
,
2017
, “
Subcooled Water Flow Boiling Heat Transfer in Screw Cooling Tubes Under One-Sided Heating Conditions
,”
Appl. Therm. Eng.
,
113
, pp.
621
631
. 10.1016/j.applthermaleng.2016.11.012
41.
Siemens PLM Software
,
2018
,
STAR-CCM+ User Guide Version 13.02.013-R8
.
42.
Podowski
,
M. Z.
,
Antal
,
S. P.
,
Tselishcheva
,
E. A.
, and
Wierzbicki
,
B. Z.
,
2007
,
Development of Mechanistic Models of Two-Phase Flows for the Nphase Code
.
43.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New K-Ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
. 10.1016/0045-7930(94)00032-T
44.
Kurul
,
N.
, and
Podowski
,
M. Z.
,
1990
, “
Multidimensional Effects in Forced Convection Subcooled Boiling
,”
Proceedings of the Ninth International Heat Transfer Conference
,
5
, pp.
21
26
. 10.1615/IHTC9.40
45.
Del Valle
,
V. H.
, and
Kenning
,
D. B. R.
,
1985
, “
Subcooled Flow Boiling at High Heat Flux
,”
Int. J. Heat Mass Transf.
,
28
(
10
), pp.
1907
1920
. 10.1016/0017-9310(85)90213-3
46.
Hoang
,
N. H.
,
Chu
,
I. C.
,
Euh
,
D. J.
, and
Song
,
C. H.
,
2015
, “
On the Application of Wall Boiling Models to Prediction Of Subcooled Flow Boiling Using Eagle Code
,”
NURETH-16
,
Chicago, IL
.
47.
Ranz
,
W.E.
,
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops–Part I and II
,”
Chem. Eng. Prog.
,
48
(
3
), p.
141
.
48.
Tomiyama
,
A.
,
Kataoka
,
I.
,
Zun
,
I.
, and
Sakaguchi
,
T.
,
1998
, “
Drag Coefficients of Single Bubbles Under Normal and Micro Gravity Conditions
,”
JSME Int. J. Ser. B
,
41
(
2
), pp.
472
479
. 10.1299/jsmeb.41.472
49.
Hirai
,
T.
,
Panayotis
,
S.
,
Barabash
,
V.
,
Amzallag
,
C.
,
Escourbiac
,
F.
,
Durocher
,
A.
,
Merola
,
M.
,
Linke
,
J.
,
Loewenhoff
,
T.
,
Pintsuk
,
G.
,
Wirtz
,
M.
, and
Uytdenhouwen
,
I.
,
2016
, “
Use of Tungsten Material for the ITER Divertor
,”
Nucl. Mater. Energy
,
9
, pp.
616
622
. 10.1016/j.nme.2016.07.003
50.
Merola
,
M.
,
2013
, “
The ITER Divertor
,”
MIIFED Conference-Forum on The WEST Project
,
Monaco
.
51.
Hancock
,
D.
,
Homfray
,
D.
,
Porton
,
M.
,
Todd
,
I.
, and
Wynne
,
B.
,
2018
, “
Refractory Metals as Structural Materials for Fusion High Heat Flux Components
,”
Journal of Nuclear Materials
,
512
, pp.
169
183
. 10.1016/j.jnucmat.2018.09.052
52.
Pintsuk
,
G.
,
Blumm
,
J.
,
Hohenauer
,
W.
,
Hula
,
R. C.
,
Koppitz
,
T.
,
Lindig
,
S.
,
Pitzer
,
D.
,
Rohde
,
M.
,
Schoderböck
,
P.
,
Schubert
,
T.
,
Tietz
,
F.
, and
Wouters
,
O.
,
2010
, “
Inter-Laboratory Test on Thermophysical Properties of the ITER Grade Heat Sink Material Copper-Chromium-Zirconium
,”
Int. J. Thermophys.
,
31
(
11
), pp.
2147
2158
. 10.1007/s10765-010-0857-y
You do not currently have access to this content.