Intelligent tires can be used in autonomous vehicles to insure the vehicle safety by monitoring the tire and tire-road conditions using sensors embedded on the tire. These sensors and their wireless communication systems need to be powered by energy sources such as batteries or energy harvesters. The deflection of tires during rotation is an available and reliable source of energy for electric power generation using piezoelectric energy harvesters to feed tire self-powered sensors and their wireless communication systems. The aim of this study is to design, analyze, and optimize a rainbow-shaped piezoelectric energy harvester mounted on the inner layer of a pneumatic tire for providing enough power for microelectronics devices required for monitoring intelligent tires. It is shown that the designed piezoelectric energy harvester can generate sufficient voltage, power, and energy required for a tire pressure monitoring system (TPMS) with high data transmission speed or three TPMSs with average data transmission speed. The effect of the vehicle speed on the voltage and electric energy generated by the designed piezoelectric is also studied. The geometry and the circuit load resistance of the piezoelectric energy harvester are optimized in order to increase the energy harvesting efficiency. It is shown that the optimized rainbow piezoelectric energy harvester can reach the highest power generation among all the strain-based energy harvesters that partially cover the inner layer of the tire.

References

1.
Zarzycki
,
R.
, and
Panowski
,
M.
,
2017
, “
Analysis of the Flue Gas Preparation Process for the Purposes of Carbon Dioxide Separation Using the Adsorption Methods
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032008
.
2.
Bastani
,
P.
,
Heywood
,
J. B.
, and
Hope
,
C.
,
2012
, “
Fuel Use and CO2 Emissions Under Uncertainty From Light-Duty Vehicles in the U.S. to 2050
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042202
.
3.
Zhang
,
C.
,
Ge
,
Y.
,
Tan
,
J.
,
li
,
L.
,
Peng
,
Z.
, and
Wang
,
X.
,
2017
, “
Emissions From Light-Duty Passenger Cars Fueled With Ternary Blend of Gasoline, Methanol, and Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062202
.
4.
Yusaf
,
T. F.
,
2009
, “
Diesel Engine Optimization for Electric Hybrid Vehicles
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012203
.
5.
Himelic
,
J. B.
, and
Kreith
,
F.
,
2011
, “
Potential Benefits of Plug-In Hybrid Electric Vehicles for Consumers and Electric Power Utilities
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031001
.
6.
Malikopoulos
,
A. A.
,
2013
, “
Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041201
.
7.
Aymen
,
F.
,
2017
, “
Internal Fuzzy Hybrid Charger System for a Hybrid Electrical Vehicle
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012003
.
8.
Capata
,
R.
, and
Sciubba
,
E.
,
2013
, “
The Low Emission Turbogas Hybrid Vehicle Concept—Preliminary Simulation and Vehicle Packaging
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032203
.
9.
Karim
,
A.
, and
Shahid
,
Z.
,
2017
, “
Performance and Cost Analysis of Conventional Petrol Car Converted Into Solar-Electric Hybrid Car
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032009
.
10.
Nakir
,
I.
,
Durusu
,
A.
,
Akca
,
H.
,
Ajder
,
A.
,
Ayaz
,
R.
,
Ugur
,
E.
, and
Tanrioven
,
M.
,
2015
, “
A New MPPT Algorithm for Vehicle Integrated Solar Energy System
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
021601
.
11.
Wong
,
K. V.
,
2014
, “
Land-Sail Vehicle to Generate Electricity
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
014701
.
12.
Panchal
,
S.
,
Dincer
,
I.
, and
Agelin-Chaab
,
M.
,
2015
, “
Thermodynamic Analysis of Hydraulic Braking Energy Recovery Systems for a Vehicle
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011601
.
13.
Co
,
T. Y. R.
,
2005
, “
Intelligent Tire Pressure Monitoring System Detects Sideslips Faster Another Advance in Vehicle Safety Technology
,” Yokohama, accessed Jan. 7, 2018, https://www.y-yokohama.com/release/?id=1424&lang=en&sp=520
14.
Pohl
,
A.
,
Steindl
,
R.
, and
Reindl
,
L.
,
1999
, “
The ‘Intelligent Tire’ Utilizing Passive SAW Sensors Measurement of Tire Friction
,”
IEEE Trans. Instrum. Meas.
,
48
(
6
), pp.
1041
1046
.
15.
Matsuzaki
,
R.
, and
Todoroki
,
A.
,
2008
, “
Wireless Monitoring of Automobile Tires for Intelligent Tires
,”
Sensors
,
8
(
12
), pp.
8123
8138
.
16.
Alhadri
,
M.
,
Esmaeeli
,
R.
,
Mohammed
,
A. H.
,
Zakri
,
W.
,
Hashemi
,
S. R.
,
Aliniagerdroudbari
,
H.
,
Barua
,
H.
, and
Farhad
,
S.
, “
Studying the Degradation of Lithium-Ion Batteries Using an Empirical Model for Aircraft Applications
,”
ASME
Paper No. POWER2018-7428.
17.
Nazari
,
A.
,
Esmaeeli
,
R.
,
Hashemi
,
S. R.
,
Aliniagerdroudbari
,
H.
, and
Farhad
,
S.
,
2018
, “
The Effect of Temperature on Lithium-Ion Battery Energy Efficiency Graphite/LiFePO4 Electrodes at Different Nominal Capacities
,”
ASME
Paper No. POWER2018-7375.
18.
Mohammed
,
A. H.
,
Alhadri
,
M.
,
Zakri
,
W.
,
Aliniagerdroudbari
,
H.
,
Esmaeeli
,
R.
,
Hashemi
,
S. R.
,
Nadkarni
,
G.
, and
Farhad
,
S.
,
2018
, “
Design and Comparison of Cooling Plates for a Prismatic Lithium-Ion Battery for Electrified Vehicles
,”
SAE Paper No. 0148-7191
.
19.
Hashemi
,
S. R.
,
Nazari
,
A.
,
Esmaeeli
,
R.
,
Aliniagerdroudbari
,
H.
,
Alhadri
,
M.
,
Zakri
,
W.
,
Mohammed
,
A. H.
,
Mahajan
,
A.
, and
Farhad
,
S.
, “
Fast Fault Diagnosis of a Lithium-Ion Battery for Hybrid Electric Aircraft
,”
ASME
Paper No. POWER2018-7476.
20.
Löhndorf
,
M.
,
Kvisterøy
,
T.
,
Westby
,
E.
, and
Halvorsen
,
E.
,
2007
, “
Evaluation of Energy Harvesting Concepts for Tire Pressure Monitoring Systems
,”
Power MEMS
, Freiburg, Germany, Nov. 28–29, pp.
331
334
.http://cap.ee.ic.ac.uk/~pdm97/powermems/2007/
21.
Zervos
,
H.
,
2011
,
Energy Harvesting for Automotive Applications
,
IDTechEx
,
Cambridge, MA
.
22.
Bowen
,
C.
, and
Arafa
,
M.
,
2015
, “
Energy Harvesting Technologies for Tire Pressure Monitoring Systems
,”
Adv. Energy Mater.
,
5
(
7
), p.
1401787
.
23.
Ajitsaria
,
J.
,
Choe
,
S.-Y.
,
Shen
,
D.
, and
Kim
,
D.
,
2007
, “
Modeling and Analysis of a Bimorph Piezoelectric Cantilever Beam for Voltage Generation
,”
Smart Mater. Struct.
,
16
(
2
), p.
447
.
24.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
025009
.
25.
Goldschmidtboeing
,
F.
, and
Woias
,
P.
,
2008
, “
Characterization of Different Beam Shapes for Piezoelectric Energy Harvesting
,”
J. Micromech. Microeng.
,
18
(
10
), p.
104013
.
26.
Choi
,
W.
,
Jeon
,
Y.
,
Jeong
,
J.-H.
,
Sood
,
R.
, and
Kim
,
S.-G.
,
2006
, “
Energy Harvesting MEMS Device Based on Thin Film Piezoelectric Cantilevers
,”
J. Electroceram.
,
17
(
2–4
), pp.
543
548
.
27.
Saadon
,
S.
, and
Sidek
,
O.
,
2011
, “
A Review of Vibration-Based MEMS Piezoelectric Energy Harvesters
,”
Energy Convers. Manage.
,
52
(
1
), pp.
500
504
.
28.
Kubba
,
A. E.
, and
Jiang
,
K.
,
2013
, “
Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester
,”
Sensors
,
14
(
1
), pp.
188
211
.
29.
Frey
,
A.
,
Seidel
,
J.
, and
Kuehne
,
I.
,
2010
, “
System Design of a Piezoelectric MEMS Energy Harvesting Module Based on Pulsed Mechanical Excitation
,”
Power MEMS
, Leuven, Belgium, Nov. 30–Dec. 3, pp.
29
32
.http://cap.ee.ic.ac.uk/~pdm97/powermems/2010/
30.
Hatipoglu
,
G.
, and
Ürey
,
H.
,
2009
, “
FR4-Based Electromagnetic Energy Harvester for Wireless Sensor Nodes
,”
Smart Mater. Struct.
,
19
(
1
), p.
015022
.
31.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
(
3
), pp.
197
206
.
32.
Anton
,
S.
,
Erturk
,
A.
, and
Inman
,
D.
,
2010
, “
Multifunctional Self-Charging Structures Using Piezoceramics and Thin-Film Batteries
,”
Smart Mater. Struct.
,
19
(
11
), p.
115021
.
33.
Wang
,
Y.-J.
,
Chen
,
C.-D.
, and
Sung
,
C.-K.
,
2010
, “
Design of a Frequency-Adjusting Device for Harvesting Energy From a Rotating Wheel
,”
Sens. Actuators A: Phys.
,
159
(
2
), pp.
196
203
.
34.
Van den Ende
,
D.
,
Van de Wiel
,
H.
,
Groen
,
W.
, and
Van der Zwaag
,
S.
,
2011
, “
Direct Strain Energy Harvesting in Automobile Tires Using Piezoelectric PZT–Polymer Composites
,”
Smart Mater. Struct.
,
21
(
1
), p.
015011
.
35.
Makki
,
N.
, and
Pop-Iliev
,
R.
, “
Piezoelectric Power Generation in Tires
,” Proceedings of the Smart Materials & Structures/NDT in Aerospace/NDT in Canada, Montreal, QC, Canada, Nov. 2–4.https://www.ndt.net/events/NDTCanada2011/proceedings/papers/40_Makki_Rev1.pdf
36.
Kubba
,
A. E.
,
Behroozi
,
M.
,
Olatunbosun
,
O. A.
,
Anthony
,
C.
, and
Jiang
,
K.
,
2014
, “
Modeling of Strain Energy Harvesting in Pneumatic Tires Using Piezoelectric Transducer
,”
Tire Sci. Technol.
,
42
(
1
), pp.
16
34
.
37.
Mancosu
,
F.
,
Matrascia
,
G.
, and
Villa
,
D.
,
2006
, “
Vehicle Tire and System for Generating Electrical Energy in the Tire
,” U.S. Patent No. 6,992,423.
38.
Hu
,
Y.
,
Xu
,
C.
,
Zhang
,
Y.
,
Lin
,
L.
,
Snyder
,
R. L.
, and
Wang
,
Z. L.
,
2011
, “
A Nanogenerator for Energy Harvesting From a Rotating Tire and Its Application as a Self‐Powered Pressure/Speed Sensor
,”
Adv. Mater.
,
23
(
35
), pp.
4068
4071
.
39.
Lee
,
J.
, and
Choi
,
B.
,
2014
, “
Development of a Piezoelectric Energy Harvesting System for Implementing Wireless Sensors on the Tires
,”
Energy Convers. Manage.
,
78
, pp.
32
38
.
40.
Makki
,
N.
, and
Pop-Iliev
,
R.
,
2012
, “
Battery-and Wire-Less Tire Pressure Measurement Systems (TPMS) Sensor
,”
Microsyst. Technol.
,
18
(
7–8
), pp.
1201
1212
.
41.
Xiangjian
,
L.
,
Renwen
,
C.
, and
Liya
,
Z.
,
2012
, “
Energy Conversion Efficiency of Rainbow Shape Piezoelectric Transducer
,”
Chin. J. Aeronaut.
,
25
(
5
), pp.
691
697
.
42.
Sergio
,
M.
,
Manaresi
,
N.
,
Tartagni
,
M.
,
Canegallo
,
R.
, and
Guerrieri
,
R.
,
2006
, “
On a Road Tire Deformation Measurement System Using a Capacitive– Resistive Sensor
,”
Smart Mater. Struct.
,
15
(
6
), p.
1700
.
43.
Lee
,
J.
,
Kim
,
S.
,
Oh
,
J.
, and
Choi
,
B.
,
2012
, “
A Self-Powering System Based on Tire Deformation During Driving
,”
Int. J. Automot. Technol.
,
13
(
6
), pp.
963
969
.
44.
Clark
,
S. K.
,
1978
, “
Rolling Resistance of Pneumatic Tires
,”
Tire Sci. Technol.
,
6
(
3
), pp.
163
175
.
45.
Khameneifar
,
F.
, and
Arzanpour
,
S.
, “
Energy Harvesting From Pneumatic Tires Using Piezoelectric Transducers
,”
ASME
Paper No. SMASIS2008-426.
46.
Roundy
,
S. J.
,
2003
,
Energy Scavenging for Wireless Sensor Nodes With a Focus on Vibration to Electricity Conversion
,
University of California, Berkeley
,
Berkeley, CA
.
47.
Brooks
,
S.
, and
Heyliger
,
P.
,
1994
, “
Static Behavior of Piezoelectric Laminates With Distributed and Patched Actuators
,”
J. Intell. Mater. Syst. Struct.
,
5
(
5
), pp.
635
646
.
48.
Zhou
,
Y.
, and
Tiersten
,
H.
,
1994
, “
An Elastic Analysis of Laminated Composite Plates in Cylindrical Bending Due to Piezoelectric Actuators
,”
Smart Mater. Struct.
,
3
(
3
), p.
255
.
49.
Ray
,
M.
,
Bhattacharya
,
R.
, and
Samanta
,
B.
,
1993
, “
Exact Solutions for Static Analysis of Intelligent Structures
,”
AIAA J.
,
31
(
9
), pp.
1684
1691
.
50.
Chen
,
C.-Q.
,
Shen
,
Y.-P.
, and
Wang
,
X.-M.
,
1996
, “
Exact Solution of Orthotropic Cylindrical Shell With Piezoelectric Layers Under Cylindrical Bending
,”
Int. J. Solids Struct.
,
33
(
30
), pp.
4481
4494
.
51.
Kapuria
,
S.
, and
Kumari
,
P.
,
2010
, “
Three-Dimensional Piezoelasticity Solution for Dynamics of Cross-Ply Cylindrical Shells Integrated With Piezoelectric Fiber Reinforced Composite Actuators and Sensors
,”
Compos. Struct.
,
92
(
10
), pp.
2431
2444
.
52.
Love
,
A. E. H.
,
2013
,
A Treatise on the Mathematical Theory of Elasticity
,
Cambridge University Press
,
Cambridge, UK
.
53.
Henrych
,
J.
,
1981
,
The Dynamics of Arches and Frames (Developments in Civil Engineering Series, Vol. 2)
,
Elsevier
, Amsterdam, The Netherlands.
54.
Bagheri
,
S.
,
Wu
,
N.
, and
Filizadeh
,
S.
,
2018
, “
Modeling of Capacitor Charging Dynamics in an Energy Harvesting System Considering Accurate Electromechanical Coupling Effects
,”
Smart Mater. Struct.
,
27
(
6
), p.
065026
.
55.
Sham
,
I.
,
2009
,
Cost-Effective Piezoelectric-Based Energy Harvesting Solution for Tire Pressure Monitoring System
,
Energy Harvesting and Storage
,
Denver, CO
, p.
4
.
You do not currently have access to this content.