In this paper, the performance of a thermochemical battery based on magnesium chloride and ammonia pair with a constant mass flow rate of ammonia gas is studied through a series of experiments using single and multicell configurations. It is shown that a lower mass flow rate lowers the temperature of the reactive complex and increases the duration of the absorption process. However, it was observed that the reaction eventually becomes mass transfer limited which slows the absorption rate to values below those specified by the mass flow controller (MFC). It was shown in the single-cell reactor that a reaction zone starts at the inlet and moves toward the end of the reactor. The mass transfer limited reaction zone movement reduces the absorption rate and temperature in the reaction zone. The overall performance of a multicell thermal battery is also studied to analyze behavior of such reactors as well. It was shown that the controlling the flow rate of ammonia can cause the cells to deviate in absorption rate.

References

1.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2014
, “
Experimental Study of Solar-Powered Desalination Pond as Second Stage in Proposed Zero Discharge Desalination Process
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031202
.
2.
Houssainy
,
S.
,
Janbozorgi
,
M.
, and
Kavehpour
,
P.
,
2018
, “
Theoretical Performance Limits of an Isobaric Hybrid Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
101201
.
3.
Herrmann
,
S.
,
Kahlert
,
S.
,
Wuerth
,
M.
, and
Spliethoff
,
H.
,
2017
, “
Thermo-Economic Evaluation of Novel Flexible CAES/CCPP Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011902
.
4.
Bao
,
H. S.
,
Wang
,
R. Z.
,
Oliveira
,
R. G.
, and
Li
,
T. X.
,
2012
, “
Resorption System for Cold Storage and Long-Distance Refrigeration
,”
Appl. Energy
,
93
, pp.
479
487
.
5.
Shahmaleki
,
P.
, and
Mahzoon
,
M.
,
2010
, “
GA Modeling and ANFIS Control Design for a Solar Power Plant
,” American Control Conference (
ACC
), Baltimore, MD, June 30--July 2, pp.
3530
3535
.
6.
Dincer
,
I.
, and
Rosen
,
M.
,
2002
,
Thermal Energy Storage: Systems and Applications
,
Wiley
, Hoboken, NJ.
7.
Pardo
,
P.
,
Deydier
,
A.
,
Anxionnaz-Minvielle
,
Z.
,
Rougé
,
S.
,
Cabassud
,
M.
, and
Cognet
,
P.
,
2014
, “
A Review on High Temperature Thermochemical Heat Energy Storage
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
591
610
.
8.
Felderhoff
,
M.
,
Urbanczyk
,
R.
, and
Peil
,
S.
,
2013
, “
Thermochemical Heat Storage for High Temperature Applications—A Review
,”
Green
,
3
(
2
), pp.
113
123
.
9.
Wang
,
Z.
,
Roffey
,
A.
,
Losantos
,
R.
,
Lennartson
,
A.
,
Jevric
,
M.
,
U. Petersen
,
A.
,
Quant
,
M.
,
Dreos
,
A.
,
Wen
,
X.
,
Sampedro
,
D.
,
Börjesson
,
K.
, and
Moth-Poulsen
,
K.
,
2018
, “
Macroscopic Heat Release in a Molecular Solar Thermal Energy Storage System
,”
Energy Environ. Sci.
(epub).
10.
Karasu
,
H.
, and
Dincer
,
I.
,
2018
, “
Analysis and Efficiency Assessment of Direct Conversion of Wind Energy Into Heat Using Electromagnetic Induction and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071201
.
11.
Elmøe
,
T. D.
,
Sørensen
,
R. Z.
,
Quaade
,
U.
,
Christensen
,
C. H.
,
Nørskov
,
J. K.
, and
Johannessen
,
T.
,
2006
, “
A High-Density Ammonia Storage/Delivery System Based on Mg(NH3)6Cl2 for—in Vehicles
,”
Chem. Eng. Sci.
,
61
(
8
), pp.
2618
2625
.
12.
Mollenhauer
,
E.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2017
, “
Increasing the Flexibility of Combined Heat and Power Plants With Heat Pumps and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020907
.
13.
Udell
,
K. S.
,
Kekelia
,
B.
,
Fan
,
P.
,
Zhou
,
C.
, and
Fang
,
Z.
,
2015
, “
Performance of a Multi–Cell MgCl2/NH3 Thermo-Chemical Battery During Recharge and Operation
,”
ASME
Paper No. ES2015-49508.
14.
Hedayat Mofidi
,
S. A.
, and
Udell
,
K. S.
,
2017
, “
Study of Heat and Mass Transfer in MgCl2/NH3 Thermochemical Batteries
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032005
.
15.
Hedayat Mofidi
,
S. A.
, and
Udell
,
K. S.
,
2016
, “
Study of Heat and Mass Transfer in MgCl2/NH3 Thermo-Chemical Batteries
,”
ASME
Paper No. ES2016-59099.
16.
Gardie
,
P.
, and
Goetz
,
V.
,
1995
, “
Thermal Energy Storage System by Solid Absorption for Electric Automobile Heating and Air-Conditioning
,”
SAE
Paper No. 950017.
17.
Neveu
,
P.
, and
Castaing
,
J.
,
1993
, “
Solid-Gas Chemical Heat Pumps: Field of Application and Performance of the Internal Heat of Reaction Recovery Process
,”
Heat Recov. Syst. CHP
,
13
(
3
), pp.
233
251
.
18.
Van der Pal
,
M.
,
de Boer
,
R.
, and
Veldhuis
,
J.
,
2011
, “
Experimental Setup for Determining Ammonia-Salt Adsorption and Desorption Behavior Under Typical Heat Pump Conditions: A Description of the Setup and Experimental Results
,” International Sorption Heat Pump Conference, Padua, Italy, Apr. 5–7.
19.
de Boer
,
R.
,
Smeding
,
S. F.
,
Zondag
,
H. A.
, and
Krol
,
G.
,
2014
, “
Development of a Prototype System for Seasonal Solar Heat Storage Using an Open Sorption Process
,” Eurotherm Seminar #99: Advances in Thermal Energy Storage,
Lleida, Spain, May 28–30
.
20.
Haije
,
W. G.
,
Veldhuis
,
J. B. J.
,
Smeding
,
S. F.
, and
Grisel
,
R. J. H.
,
2007
, “
Solid/Vapor Sorption Heat Transformer: Design and Performance
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1371
1376
.
21.
Goetz
,
V.
, and
Marty
,
A.
,
1992
, “
A Model for Reversible Solid-Gas Reactions Submitted to Temperature and Pressure Constraints: Simulation of the Rate of Reaction in Solid-Gas Reactor Used as Chemical Heat Pump
,”
Chem. Eng. Sci.
,
47
(
17–18
), pp.
4445
4454
.
You do not currently have access to this content.