Coal fires exist in almost every coal-producing country and generate huge amounts of heat energy every year. In this paper, forced convective heat-extraction is presented as a method to exploit the potential heat in coal fire zones as an energy resource. A geological model of coal fire zones and a combustion model for underground coal in an O2-depleted atmosphere are established. The borehole layouts, the heat transfer medium (HTM) injection rates, and the cooling effect of the HTM on the coal and rock are analyzed using a three-dimensional (3D) simulation software (fluent). The results show that a borehole layout of multihole injection and oriented type proves to be suitable for coal fire zones. The simulation predicts that the temperature of the extracted HTM and the rate of heat extraction decrease as extraction time increases. The simulation further predicts that the temperature of the extracted HTM can be increased by reducing the rate at which the HTM injected. Additionally, the heat-extraction rate is more stable for relatively low HTM injection rates. The temperature of the coal fire zones can be reduced effectively by using forced convective heat-extraction, with the maximum temperature of the coal fire zones and the average temperature in the residual coal zone being cubic and quadratic function relationship of the heat-extraction time, respectively. This research provides a reference for waste-energy exploitation in coal fire areas.

References

1.
Zhang
,
J.
,
2008
,
Underground Coal Fires in China: Origin, Detection, Fire-Fighting and Prevention
,
China Coal Industry Publishing House
,
Beijing, China
.
2.
Stracher
,
G. B.
, and
Taylor
,
T. P.
,
2004
, “
Coal Fires Burning out of Control Around the World: Thermodynamic Recipe for Environmental Catastrophe
,”
Int. J. Coal Geology
,
59
(
1–2
), pp.
7
17
.
3.
Kuenzer
,
C.
,
Zhang
,
J.
,
Sun
,
Y.
,
Jia
,
Y.
, and
Dech
,
S.
,
2012
, “
Coal Fires Revisited: The Wuda Coal Field in the Aftermath of Extensive Coal Fire Research and Accelerating Extinguishing Activities
,”
Int. J. Coal Geology
,
102
, pp.
75
86
.
4.
Xinjiang Coal Design Research Institute LTD Company
,
2015
,
Management Plans for Coal Fires in Xinjiang
,
Xinjiang Coal Design Research Institute Ltd. Company
,
Xinjiang, China
.
5.
Shi
,
B.
,
Su
,
H.
,
Li
,
J.
,
Qi
,
H.
,
Zhou
,
F.
,
Torero
,
J. L.
, and
Chen
,
Z.
,
2017
, “
Clean Power Generation From the Intractable Natural Coalfield Fires: Turn Harm Into Benefit
,”
Sci. Rep.
,
7
(
1
), p.
5302
.
6.
Colaizzi
,
G. J.
,
2004
, “
Prevention, Control and/or Extinguishment of Coal Seam Fires Using Cellular Grout
,”
Int. J. Coal Geology
,
59
(
1–2
), pp.
75
81
.
7.
Qi
,
D.
,
2005
, “
The Coal Fire Disaster and Its Control Method in Xinjiang
,”
China Coal
,
31
(
6
), pp.
34
36
.
8.
O'Keefe
,
J. M. K.
,
Neace
,
E. R.
,
Lemley
,
E. W.
,
Hower
,
J. C.
,
Henke
,
K. R.
,
Copley
,
G.
,
Hatch
,
R. S.
,
Satterwhite
,
A. B.
, and
Blake
,
D. R.
,
2011
, “
Old Smokey Coal Fire, Floyd County, Kentucky: Estimates of Gaseous Emission Rates
,”
Int. J. Coal Geol.
,
87
(2), pp.
150
156
.
9.
Ide
,
T. S.
,
Pollard
,
D.
, and
Orr
,
F. M.
,
2010
, “
Fissure Formation and Subsurface Subsidence in a Coalbed Fire
,”
Int. J. Rock Mech. Min. Sci.
,
47
(
1
), pp.
81
93
.
10.
Zhou
,
L.
,
Zhang
,
D.
,
Wang
,
J.
,
Huang
,
Z.
, and
Pan
,
D.
,
2013
, “
Mapping Land Subsidence Related to Underground Coal Fires in the Wuda Coalfield (Northern China) Using a Small Stack of ALOS PALSAR Differential Interferograms
,”
Remote Sens.
,
5
(
12
), pp.
1152
1176
.
11.
Liang
,
Y.
,
Liang
,
H.
, and
Zhu
,
S.
,
2014
, “
Mercury Emission From Coal Seam Fire at Wuda, Inner Mongolia, China
,”
Atmos. Environ.
,
83
, pp.
176
184
.
12.
Qi
,
X.
,
Wang
,
D.
,
Xin
,
H.
, and
Zhong
,
X.
,
2013
, “
Environmental Hazards of Coal Fire and Their Prevention in China
,”
Environ. Eng. Manage. J.
,
12
(
10
), pp.
1915
1919
.
13.
Rai
,
S.
,
Prakash
,
A.
,
Ghosh
,
A. K.
, and
Aroan
,
S.
,
2013
, “
Causes of Subsidence Potentiality Above Old Abandoned Underground Coal Mines Workings at Karharbari Formation, Giridih, Jharkhand
,”
J. Mines, Met. Fuels
,
61
(
1–2
), pp.
37
42
.
14.
Chiasson
,
A. D.
,
Yavuzturk
,
C.
, and
Walrath
,
D. E.
,
2007
, “
Evaluation of Electricity Generation From Underground Coal Fires and Waste Banks
,”
ASME J. Energy Resour. Technol.
,
129
(
2
), pp.
81
88
.
15.
Schmidt
,
M.
,
Suhendra
,
S.
, and
Rüter
,
H.
,
2010
, “
Heat Pipes-Suitable for Extinguishing Underground Coal Fires
?,”
Latest Developments in Coal Fire Research-Bridging the Science, Economics, and Politics of a Global Disaster
,
C.
Drebenstedt
,
C.
Fischer
,
U.
Meyer
,
J.
Wu
, and
B.
Kong
, eds.,
TU Bergakademie Freiberg
,
Berlin
, pp.
433
437
.
16.
Kürten
,
S.
,
Feinendegen
,
M.
, and
Noel
,
Y.
,
2015
, “
Geothermal Utilization of Smoldering Mining Dumps
,”
Coal and Peat Fires: A Global Perspective
(Case Studies-Coal Fires, Vol. 3),
G. B.
Stracher
,
A.
Prakash
, and
E. V.
Sokol
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
241
261
.
17.
Deng
,
J.
,
Li
,
B.
, and
Ma
,
L.
,
2015
, “
Influence of Heat Pipe on Temperature Distribution in Coal Storage Pile
,”
China Saf. Sci. J.
,
25
(
6
), pp.
62
67
.
18.
Cao
,
D.
,
Fan
,
X.
,
Wu
,
C.
, and
Wang
,
G.
,
2009
, “
Study on the Fractures Related With Coalfield Fire Area in Wuda Coalfield, Inner Mongolia
,”
J. China Coal Soc.
,
34
(
8
), pp.
1009
1014
.
19.
Chen
,
Y.
,
Wu
,
X.
, and
Zhang
,
F.
,
1999
, “
Experimental Investigations on Thermal Cracking of Stones
,”
Chin. Sci. Bull.
,
4
(
8
), pp.
880
883
.
20.
Du
,
S.
,
Liu
,
H.
,
Zhi
,
H.
, and
Chen
,
H.
,
2004
, “
Testing Study on Mechanical Properties of Post-High-Temperature Granite
,”
Chin. J. Rock Mech. Eng.
,
23
(
14
), pp.
2359
2364
.
21.
Zhang
,
L.
,
Mao
,
X.
, and
Lu
,
A.
,
2009
, “
Experimental Study on the Mechanical Properties of Rocks at High Temperature
,”
Sci. China, Ser. E: Technological Sci.
,
52
(
3
), pp.
641
646
.
22.
Zhong
,
X.
,
Tang
,
Y.
, and
Tian
,
X.
,
2016
, “
Heat Extraction and Conversion in Large Coalfield Fire Areas
,”
Saf. Coal Mines
,
47
(
10
), pp.
161
164
.
23.
Palchik
,
V.
,
2003
, “
Formation of Fractured Zones in Overburden Due to Longwall Mining
,”
Environ. Geol.
,
44
, pp.
28
38
.
24.
Wessling
,
S.
,
Kessels
,
W.
,
Schmidt
,
M.
, and
Krause
,
U.
,
2008
, “
Investigating Dynamic Underground Coal Fires by Means of Numerical Simulation
,”
Geophys. J. Int.
,
172
(
1
), pp.
439
454
.
25.
Li
,
B.
,
Chen
,
G.
,
Zhang
,
H.
, and
Sheng
,
C.
,
2014
, “
Development of Non-Isothermal TGA-DSC for Kinetics Analysis of Low Temperature Coal Oxidation Prior to Ignition
,”
Fuel
,
118
, pp.
385
391
.
26.
Coats
,
A. W.
, and
Redfern
,
J. P.
,
1964
, “
Kinetic Parameters From Thermogravimetric Data
,”
Nature
,
201
(
4914
), pp.
68
69
.
27.
Liu
,
M. X.
,
Shi
,
G. Q.
,
Guo
,
Z.
,
Wang
,
Y. M.
, and
Ma
,
L. Y.
,
2016
, “
3D Simulation of Gases Transport Under Condition of Inert Gas Injection Into Goaf
,”
Heat Mass Transfer/Wärme-und Stoffübertragung
,
52
(
12
), pp. 2723–2734.
28.
Song
,
Z. Y.
,
Zhu
,
H. Q.
,
Tan
,
B.
,
Wang
,
H. Y.
, and
Qin
,
X. F.
,
2014
, “
Numerical Study on Effects of Air Leakages From Abandoned Galleries on Hill-Side Coal Fires
,”
Fire Saf. J.
,
69
, pp.
99
110
.
29.
Shi
,
G.
,
Hu
,
F.
,
Wang
,
D.
, and
Wang
,
S.
,
2014
, “
Unsteady Simulation on Distribution of Three Zones for Spontaneous Combustion in Goaf Areas
,”
J. China Univ. Min. Technol.
,
43
(
2
), pp.
189
194
.
30.
Wolf
,
K. H.
, and
Bruining
,
H.
,
2007
, “
Modelling the Interaction Between Underground Coal Fires and Their Roof Rocks
,”
Fuel
,
86
(
17–18
), pp.
2761
2777
.
31.
Karacan
,
C. Ö.
,
2010
, “
Prediction of Porosity and Permeability of Caved Zone in Longwall Gobs
,”
Transp. Porous Media
,
82
(
2
), pp.
413
439
.
32.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach Science Publisher
,
New York
.
33.
MIT-led Interdisciplinary Panel
,
2006
,
The Future of Geothermal Energy-Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century
,
Idaho National Laboratory
,
Idaho Falls, ID
.
You do not currently have access to this content.