The scaling concept is important, effective, and consistent in any application of science and engineering. Scaled physical models have inimitable advantages of finding all physical phenomena occurring in a specific process by transforming parameters into dimensionless numbers. This concept is applicable to thermal enhanced oil recovery (EOR) processes where continuous alteration (i.e., memory) of reservoir properties can be characterized by various dimensionless numbers. Memory is defined as the continuous time function or history dependency which leads to the nonlinearity and multiple solutions during modeling of the process. This study critically analyzed sets of dimensionless numbers proposed by Hossain and Abu-Khamsin in addition to Nusselt and Prandtl numbers. The numbers are also derived using inspectional and dimensional analysis (DA), while memory concept is used to develop some groups. In addition, this article presents relationships between different dimensionless numbers. Results show that proposed numbers are measures of thermal diffusivity and hydraulic diffusivity of a fluid in a porous media. This research confirms that the influence of total absolute thermal conductivities of the fluid and rock on the effective thermal conductivity of the fluid-saturated porous medium diminishes after a certain local Nusselt number of the system. Finally, the result confirms that the convective ability of the fluid-saturated porous medium is apparently more pronounced than its conductive ability. This study will help to better understand the modeling of the EOR process thus improving process design and performance prediction.

References

1.
Coskuner
,
G.
, and
Bentsen
,
R. G.
,
1988
, “
Hele Shaw Cell Study of a New Approach to Instability Theory in Porous Media
,”
J. Can. Pet. Technol.
,
27
(
1
), pp.
87
95
.
2.
Hossain
,
M. E.
, and
Islam
,
M. R.
,
2011
, “
Development of New Scaling Criteria for a Fluid Flow Model With Memory
,”
Adv. Sustainable Pet. Eng. Sci.
,
2
(
3
), pp.
239
261
.
3.
Caputo
,
M.
, and
Plastino
,
W.
,
2004
, “
Diffusion in Porous Layers With Memory
,”
Geophys. J. Int.
,
158
(
1
), pp.
385
396
.
4.
De Espíndola
,
J. J.
,
Da Silva Neto
,
J. M.
, and
Lopes
,
E. M. O.
,
2005
, “
A Generalized Fractional Derivative Approach to Viscoelastic Material Properties Measurement
,”
Appl. Math. Comput.
,
164
(
2
), pp.
493
506
.
5.
Cloot
,
A.
, and
Botha
,
J. F.
,
2006
, “
A Generalized Groundwater Flow Equation Using the Concept of Non-Integer Order Derivatives
,”
Water SA
,
32
(
1
), pp.
1
7
.
6.
Iaffaldano
,
G.
,
Caputo
,
M.
, and
Martino
,
S.
,
2006
, “
Experimental and Theoretical Memory Diffusion of Water in Sand
,”
Hydrol. Earth Syst. Sci.
,
10
(
1
), pp.
93
100
.
7.
Di Giuseppe
,
E.
,
Moroni
,
M.
, and
Caputo
,
M.
,
2010
, “
Flux in Porous Media With Memory: Models and Experiments
,”
Transp. Porous Media
,
83
(
3
), pp.
479
500
.
8.
Zavala-Sanchez
,
V.
,
Dentz
,
M.
, and
Sanchez-Vila
,
X.
,
2009
, “
Characterization of Mixing and Spreading in a Bounded Stratified Medium
,”
Adv. Water Resour.
,
32
(
5
), pp.
635
648
.
9.
Hossain
,
M. E.
, and
Abu-Khamsin
,
S. A.
,
2012
, “
Development of Dimensionless Numbers for Heat Transfer in Porous Media Using Memory Concept
,”
J. Porous Media
,
15
(
10
), pp.
957
973
.
10.
Hossain
,
M. E.
, and
Abu-Khamsin
,
S. A.
,
2012
, “
Utilization of Memory Concept to Develop Heat Transfer Dimensionless Numbers for Porous Media Undergoing Thermal Flooding With Equal Rock-Fluid Temperatures
,”
J. Porous Media
,
15
(
10
), pp.
937
953
.
11.
Caputo
,
M.
,
1998
, “
3-Dimensional Physically Consistent Diffusion in Anisotropic Media With Memory
,”
Rend. Mat. Acc. Lincei.
,
9
(
2
), pp.
131
143
. https://eudml.org/doc/252300
12.
Caputo
,
M.
,
1999
, “
Diffusion of Fluids in Porous Media With Memory
,”
Geothermics
,
28
(
1
), pp.
113
130
.
13.
Caputo
,
M.
,
2000
, “
Models of Flux in Porous Media With Memory
,”
Water Resour. Res.
,
36
(
3
), pp.
693
705
.
14.
Caputo
,
M.
, and
Cametti
,
C.
,
2009
, “
The Memory Formalism in the Diffusion of Drugs Through Skin Membrane
,”
J. Phys. D Appl. Phys.
,
42
(
12
), p.
125505
.
15.
Caputo
,
M.
, and
Fabrizio
,
M.
,
2015
, “
A New Definition of Fractional Derivative Without Singular Kernel
,”
Progr. Fract. Differ. Appl.
,
1
(
2
), pp.
73
85
. http://icmis5.mobile.naturalspublishing.com/files/published/0gb83k287mo759.pdf
16.
Hossain
,
M. E.
,
Mousavizadegan
,
S. H.
, and
Islam
,
M. R.
,
2009
, “
Variation of Rock and Fluid Temperature During Thermal Operations in Porous Media
,”
J. Pet. Sci. Technol.
,
27
(
6
), pp.
597
611
.
17.
Hossain
,
M. E.
, and
Islam
,
M. R.
,
2009
, “
A Comprehensive Material Balance Equation With the Inclusion of Memory During Rock-Fluid Deformation
,”
Adv. Sustainable Pet. Eng. Sci.
,
1
(
2
), pp.
141
162
. http://faculty.kfupm.edu.sa/PET/menamul/Artecal_publeshed/Art%2013_ASPES_Hossain%20and%20Islam_2009_Comp%20MBE.pdf
18.
Mamghaderi
,
A.
,
Bastami
,
A.
, and
Pourafshary
,
P.
,
2012
, “
Optimization of Waterflooding Performance in a Layered Reservoir Using a Combination of Capacitance-Resistive Model and Genetic Algorithm Method
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013102
.
19.
Liu
,
P.
,
Zheng
,
H.
, and
Wu
,
G.
,
2017
, “
Experimental Study and Application of Steam Flooding for Horizontal Well in Ultraheavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012908
.
20.
Geertsma
,
J.
,
Croes
,
G. A.
, and
Schwarz
,
1956
, “
Theory of Dimensionally Scaled Models of Petroleum Reservoirs
,”
AIME Pet. Trans.
,
207
, pp.
118
127
.https://www.onepetro.org/general/SPE-539-G
21.
Loomis
,
A. G.
, and
Crowell
,
D. G.
,
1964
, “Theory and Application of Dimensional and Inspectional Analysis to Model Study of Fluid Displacements in Petroleum Reservoirs,” U.S. Department of the Interior, Bureau of Mines, Washington, DC, Report No. R 6546.
22.
Islam
,
M. R.
,
1987
, “Mobility Control in Waterflooding Oil Reservoirs With a Bottom-Water Zone,” Ph.D. dissertation, University of Alberta, Edmonton, AB, Canada.
23.
Rojas
,
G. A.
,
1985
, “Scaled Model Studies of Immiscible Carbon Dioxide Displacement of Heavy Oil,”
Ph.D. dissertation
, University of Alberta, Edmonton, AB, Canada. https://era.library.ualberta.ca/files/3t945t01b#.Wp5uYme6bV8
24.
Pujol
,
L.
, and
Boberg
,
T. C.
,
1972
, “
Scaling Accuracy of Laboratory Steam Flooding Models
,”
California Regional Meeting of SPE of AIME
, Bakersfield, CA, Nov. 8–10,
SPE
Paper No. SPE-4191-MS.
25.
Farouq Ali
,
S. M.
, and
Redford
,
D. A.
,
1977
, “
Physical Modeling of In Situ Recovery Methods for Oil Sands
,” CIM,
17
, pp.
319
325
.
26.
Lozada
,
D.
, and
Farouq Ali
,
S. M.
,
1988
, “
Experimental Design for Non-Equilibrium Immiscible Carbon Dioxide Flood
,”
Fourth UNITAR/UNDP International Conference on Heavy Crude and Tar Sands
, Edmonton, AB, Canada, Aug. 7–12, Paper No. 159.
27.
Lozada
,
D.
, and
Farouq Ali
,
S. M.
,
1987
, “
New Scaling Criteria for Partial Equilibrium Immiscible Carbon Dioxide Drive
,”
38th Annual Technical Meeting of the Petroleum Society of CIM
, Calgary, AB, Canada, June 7–10, Paper No.
PETSOC-87-38-23
.
28.
Kimber
,
K. D.
,
Farouq Ali
,
S. M.
, and
Puttagunta
,
V. R.
,
1988
, “
New Scaling Criteria and Their Relative Merits for Steam Recovery Experiments
,”
J. Can. Pet. Technol.
,
27
(
4
), pp.
86
94
.
29.
Islam
,
M. R. F.
, and
Ali
,
S. M.
,
1990
, “
New Scaling Criteria for Chemical Flooding Experiments
,”
J. Can. Pet. Technol.
,
29
(
1
), pp.
1
36
.
30.
Islam
,
M. R.
, and
Farouq Ali
,
S. M.
,
1992
, “
New Scaling Criteria for Chemical Flooding Experiments
,”
J. Pet. Sci. Eng.
,
6
(
4
), pp.
367
379
.
31.
Bansal
,
A.
, and
Islam
,
M. R.
,
1994
, “
Scaled Model Studies of Heavy Oil Recovery From an Alaskan Reservoir Using Gravity-Assisted Gas Injection
,”
J. Can. Pet. Technol.
,
33
(
6
), pp.
52
61
.
32.
Zhou
,
D.
, and
Yang
,
D.
,
2017
, “
Scaling Criteria for Waterflooding and Immiscible CO2 Flooding in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022909
.
33.
Basu
,
A.
, and
Islam
,
M. R.
,
2009
, “
Scaling Up of Chemical Injection Experiments
,”
Pet. Sci. Technol.
,
27
(
7
), pp.
654
665
.
34.
Farouq Ali
,
S. M.
,
Redford
,
D. A.
, and
Islam
,
M. R.
,
1987
, “
Scaling Laws for Enhanced Oil Recovery Experiments
,” China-Canada Joint Technical Conference on Heavy Oil Recovery, Zhou City, China
.
35.
Caputo
,
M.
,
1999
, “
Diffusion of Fluids in Porous Media With Memory
,”
Geothermics
,
28
(
1
), pp.
113
130
.
36.
Hossain
,
M. E.
,
Mousavizadegan
,
S. H.
, and
Islam
,
M. R.
,
2008
, “A New Porous Media Diffusivity Equation with Inclusion Rock Fluid Memories,”
SPE
Paper No. SPE-114287-MS. https://www.onepetro.org/general/SPE-114287-MS
37.
Hossain
,
M. E.
, and
Islam
,
M. R.
,
2009
,
An Advanced Analysis Technique for Sustainable Petroleum Operations
,
VDM Verlag, Dr. Muller Aktiengesellschaft & Co. KG
, Saarbrücken,
Germany
, p.
655
.
38.
van Poollen
,
H. K.
, and
Associates
,
I.
,
1980
,
Fundamentals of Enhanced Oil Recovery
, Vol.
74101
,
PennWell Publishing Company
,
Tulsa, OK
, p.
155.
39.
Chan
,
Y. T.
, and
Banerjee
,
S.
,
1981
, “
Analysis of Transient Three-Dimensional Natural Convection in Porous Media
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
242
248
.
40.
Lake
,
L. W.
,
1989
,
Enhanced Oil Recovery
, Vol.
07632
,
Prentice Hall
,
Englewood Cliffs, NJ
.
41.
Hossain
,
M. E.
,
Abu-Khamsin
,
S. A.
, and
Al-Helali
,
A.
,
2011
, “
Use of Memory Concept to Investigate Temperature Profile During a Thermal EOR Proces
s,” Annual Technical Symposium & Exhibition (SPE-SAS ATS&E)
, Al-Khobar, Saudi Arabia, May 15–18,
SPE
Paper No. SPE-149094-MS.
42.
Hossain
,
M. E.
,
Abu-Khamsin
,
S. A.
, and
Al-Helali
,
A.
,
2015
, “
A Mathematical Model for the Steam Flood With Equal Rock and Fluid Temperatures
,”
J. Porous Media
,
18
(
7
), pp.
731
744
.
43.
Spillette
,
A. G.
,
1965
, “
Heat Transfer During Hot Fluid Injection Into an Oil Reservoir
,”
J. Can. Pet. Technol.
,
4
(
4
), pp.
213
218
.
44.
Satman
,
A.
,
Zolotukhin
,
A. B.
, and
Soliman
,
M. Y.
,
1984
, “
Application of the Time-Dependent Overall Heat-Transfer Coefficient Concept to Heat-Transfer Problems in Porous Media
,”
Soc. Pet. Eng. J.
,
24
(
1
), pp.
107
112
.
45.
Dawkrajai
,
P.
,
Lake
,
L. W.
,
Yoshioka
,
K
,
Zhu
,
D.
, and
Hill
,
A. D.
, 2006, “
Detection of Water or Gas Entries in Horizontal Wells From Temperature Profiles
,” SPE/DOE Symposium on Improved Oil Recovery
, Tulsa, OK, Apr. 22–26,
SPE
Paper No. SPE-100050-MS.
46.
Yoshioka
,
K.
,
Zhu
,
D.
,
Hill
,
A. D.
,
Dawkrajai
,
P.
, and
Lake
,
L. W.
,
2006
, “
Detection of Water or Gas Entries in Horizontal Wells From Temperature Profiles
,” SPE Europe/EAGE Annual Conference and Exhibition
, Vienna, Austria, June 12–15,
SPE
Paper No. SPE-100209-MS.
47.
Weibo
,
S.
,
Ehlig-Economides
,
C.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2010
, “
Determining Multilayer Formation Properties From Transient Temperature and Pressure Measurements in Commingled Gas Wells
,”
CPS/SPE International Oil & Gas Conference and Exhibition
, Beijing, China, June 8–10,
SPE
Paper No. SPE-131150-MS.
48.
Islam
,
M. R.
,
Chakma
,
A.
, and
Jha
,
K. N.
,
1994
, “
Heavy Oil Recovery by Inert Gas Injection With Horizontal Wells
,”
J. Pet. Sci. Eng.
,
11
(
3
), pp.
213
226
.
49.
Sundaram
,
N. S.
, and
Islam
,
M. R.
,
1994
, “
Scaled Model Studies Petroleum Contaminant Removal From Soils Using Surfactant Solutions
,”
J. Hazard. Mater.
,
38
(
1
), pp.
89
103
.
50.
Dziubek
,
A.
,
2013
, “
Using Generalized Dimensional Analysis to Obtain Reduced Effective Model Equations for Condensation in Slender Tubes With Rotational Symmetry
,”
ASME J. Heat Transfer
,
135
(
5
), p.
051501
.
51.
Farahi
,
M. M. M.
,
Rasaei
,
M. R.
,
Rostami
,
B.
, and
Alizadeh
,
M.
,
2014
, “
Scaling Analysis and Modeling of Immiscible Forced Gravity Drainage Process
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022901
.
52.
Wang
,
Z.
, and
Horne
,
R. N.
,
2011
, “
Analyzing Wellbore Temperature Distributions Using Nonisothermal Multiphase Flow Simulation
,”
SPE Western North American Regional Meeting,
Anchorage, AK, May 7–11,
SPE
Paper No. SPE-144577-MS.
53.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamentals & Applications
, 4th ed.,
McGraw-Hill
,
New York
, p.
924
.
54.
Kaviany
,
M.
,
2002
,
Principles of Heat Transfer
,
Wiley
,
New York
, pp.
885
897
.
55.
Yoshioka
,
K.
,
Zhu
,
D.
,
Hill
,
A. D.
, and
Lake
,
L. W.
,
2009
, “
A New Inversion Method to Interpret Flow Profiles From Distributed Temperature and Pressure Measurements in Horizontal Wells
,”
SPE Production & Operations
, Anaheim, CA, Nov. 11–14,
SPE
Paper No. SPE-109749-MS.
56.
Yoshioka
,
K.
,
Zhu
,
D.
,
Hill
,
A. D.
,
Dawkrajai
,
P.
, and
Lake
,
L. W.
,
2007
, “
Prediction of Temperature Changes Caused by Water or Gas Entry Into a Horizontal Well
,”
SPE Prod. Oper.
,
22
(
4
), pp.
425
433
.
You do not currently have access to this content.