Production of biodiesel from waste palm oil (WPO) can provide alternative energy and at the same time reduce the problems created by disposal of WPO. In this study, a novel, inexpensive, and environmental benign carbon acid catalyst is prepared by direct in situ concentrated H2SO4 impregnation of palm empty fruit bunch (PEFB) powder and employed for biodiesel production using WPO. The structure and the physiochemical properties of the prepared catalyst (PEFB-DS-SO3H) are analyzed by acid-base back titration data, energy dispersive X-ray spectroscopy (scanning electron microscopy (SEM)-EDS), SEM, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and using N2 adsorption and desorption isotherm data. It is observed that the catalyst has a unique amorphous structure with total acid density of 5.40 mmolg−1, surface area of 5.5 m2g−1, and 0.31 cm3g−1 pore volume. In addition, FT-IR, XPS, and EDS results confirm a successful sulfonation during the catalyst preparation. It is found that fatty acid methyl ester (FAME) yield increases with increasing methanol:oil (molar ratio) and reaction time up to an optimum value. The highest biodiesel yield of 91% is reported under reaction conditions of 5 wt % catalyst, 14:1 methanol: oil (molar ratio), at 65–70 °C after 14 h in an open reflux system. Results show that the catalyst can be reused for four consecutive cycles without significant loss of catalytic activity. Fuel properties of the produced biodiesel are compatible with the international fuel standards for biodiesel.

References

1.
Cubio
,
G. M.
,
Capareda
,
S. C.
, and
Alagao
,
F. B.
,
2014
, “
Real-Time Analysis of Engine Power, Thermal Efficiency, and Emission Characteristics Using Refined and Transesterified Waste Vegetable Oil
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032201
.
2.
Gopal Gupta
,
J.
,
Kumar Agarwal
,
A.
, and
Aggarwal
,
S. K.
,
2015
, “
Particulate Emissions From Karanja Biodiesel Fueled Turbocharged CRDI Sports Utility Vehicle Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
064503
.
3.
Magara-Gomez
,
K. T.
,
Olson
,
M. R.
,
Okuda
,
T.
,
Walz
,
K. A.
, and
Schauer
,
J. J.
,
2012
, “
Sensitivity of Hazardous Air Pollutant Emissions to the Combustion of Blends of Petroleum Diesel and Biodiesel Fuel
,”
Atmos. Environ.
,
50
(
Suppl. C
), pp.
307
313
.
4.
Soloiu
,
V.
,
Harp
,
S.
,
Watson
,
C.
,
Muinos
,
M.
,
Davoud
,
S.
,
Molina
,
G.
,
Koehler
,
B.
,
Heimberger
,
J.
,
Jansons
,
M.
, and
Butts
,
C.
,
2015
, “
Performance of an IDI Engine Fueled With Fatty Acid Methyl Esters Formulated From Cotton Seeds Oils
,”
SAE Int. J. Fuels Lubr.
,
8
(
2
), pp.
277
289
.
5.
Zhang
,
Y.
,
Dubé
,
M. A.
,
McLean
,
D. D.
, and
Kates
,
M.
,
2003
, “
Biodiesel Production From Waste Cooking Oil—2: Economic Assessment and Sensitivity Analysis
,”
Bioresour. Technol.
,
90
(
3
), pp.
229
240
.
6.
Banani
,
R.
,
Youssef
,
S.
,
Bezzarga
,
M.
, and
Abderrabba
,
M.
,
2015
, “
Waste Frying Oil With High Levels of Free Fatty Acids as One of the Prominent Sources of Biodiesel Production
,”
J. Mater. Environ. Sci.
,
6
(
4
), pp.
1178
1185
.http://www.jmaterenvironsci.com/Document/vol6/vol6_N4/138-JMES-1375-2015-Banani.pdf
7.
Lam
,
M. K.
,
Lee
,
K. T.
, and
Mohamed
,
A. R.
,
2010
, “
Homogeneous, Heterogeneous and Enzymatic Catalysis for Transesterification of High Free Fatty Acid Oil (Waste Cooking Oil) to Biodiesel: A Review
,”
Biotechnol. Adv.
,
28
(
4
), pp.
500
518
.
8.
USDO
,
2017
, “
Oilseeds: World Market and Trade
,” United States Department of Agriculture,
Washington, DC
,
Report
.https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf
9.
Shankar
,
B.
,
Thaiprasert
,
N.
,
Gheewala
,
S.
, and
Smith
,
R.
,
2017
, “
Policies for Healthy and Sustainable Edible Oil Consumption: A Stakeholder Analysis for Thailand
,”
Public Health Nutr.
,
20
(
6
), pp.
1126
1134
.
10.
Zong
,
M.-H.
,
Duan
,
Z.-Q.
,
Lou
,
W.-Y.
,
Smith
,
T. J.
, and
Wu
,
H.
,
2007
, “
Preparation of a Sugar Catalyst and Its Use for Highly Efficient Production of Biodiesel
,”
Green Chem.
,
9
(
5
), pp.
434
437
.
11.
Parthiban
,
K. S.
, and
Perumalsamy
,
M.
,
2015
, “
Nano Sized Heterogeneous Acid Catalyst From Ceiba Pentandra Stalks for Production of Biodiesel Using Extracted Oil From Ceiba Pentandra Seeds
,”
RSC Adv.
,
5
(
15
), pp.
11180
11187
.
12.
Bajaj
,
A.
,
Lohan
,
P.
,
Jha
,
P. N.
, and
Mehrotra
,
R.
,
2010
, “
Biodiesel Production Through Lipase Catalyzed Transesterification: An Overview
,”
J. Mol. Catal. B
,
62
(
1
), pp.
9
14
.
13.
Su
,
F.
, and
Guo
,
Y.
,
2014
, “
Advancements in Solid Acid Catalysts for Biodiesel Production
,”
Green Chem.
,
16
(
6
), pp.
2934
2957
.
14.
Jain
,
S.
,
Sharma
,
M. P.
, and
Rajvanshi
,
S.
,
2011
, “
Acid Base Catalyzed Transesterification Kinetics of Waste Cooking Oil
,”
Fuel Process. Technol.
,
92
(
1
), pp.
32
38
.
15.
Dehkhoda
,
A. M.
,
2010
, “Developing Biochar-Based Catalyst for Biodiesel Production,”
Master's thesis
, University of British Columbia, Vancouver, BC, Canada.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.5011&rep=rep1&type=pdf
16.
Nakajima
,
K.
,
Hara
,
M.
, and
Hayashi
,
S.
,
2007
, “
Environmentally Benign Production of Chemicals and Energy Using a Carbon‐Based Strong Solid Acid
,”
J. Am. Ceram. Soc.
,
90
(
12
), pp.
3725
3734
.
17.
Lou
,
W.-Y.
,
Zong
,
M.-H.
, and
Duan
,
Z.-Q.
,
2008
, “
Efficient Production of Biodiesel From High Free Fatty Acid-Containing Waste Oils Using Various Carbohydrate-Derived Solid Acid Catalysts
,”
Bioresour. Technol.
,
99
(
18
), pp.
8752
8758
.
18.
Shu
,
Q.
,
Nawaz
,
Z.
,
Gao
,
J.
,
Liao
,
Y.
,
Zhang
,
Q.
,
Wang
,
D.
, and
Wang
,
J.
,
2010
, “
Synthesis of Biodiesel From a Model Waste Oil Feedstock Using a Carbon-Based Solid Acid Catalyst: Reaction and Separation
,”
Bioresour. Technol.
,
101
(
14
), pp.
5374
5384
.
19.
Liu
,
T.
,
Li
,
Z.
,
Li
,
W.
,
Shi
,
C.
, and
Wang
,
Y.
,
2013
, “
Preparation and Characterization of Biomass Carbon-Based Solid Acid Catalyst for the Esterification of Oleic Acid With Methanol
,”
Bioresour. Technol.
,
133
, pp.
618
621
.
20.
Fu
,
X.
,
Li
,
D.
,
Chen
,
J.
,
Zhang
,
Y.
,
Huang
,
W.
,
Zhu
,
Y.
,
Yang
,
J.
, and
Zhang
,
C.
,
2013
, “
A Microalgae Residue Based Carbon Solid Acid Catalyst for Biodiesel Production
,”
Bioresour. Technol.
,
146
, pp.
767
770
.
21.
Liang
,
F.
,
Song
,
Y.
,
Huang
,
C.
,
Zhang
,
J.
, and
Chen
,
B.
,
2013
, “
Preparation and Performance Evaluation of a Lignin-Based Solid Acid From Acid Hydrolysis Lignin
,”
Catal. Commun.
,
40
, pp.
93
97
.
22.
Pua
,
F-L.
,
Fang
,
Z.
,
Zakaria
,
S.
,
Guo
,
F.
, and
Chia
,
C-H.
,
2011
, “
Direct Production of Biodiesel From High-Acid Value Jatropha oil With Solid Acid Catalyst Derived From Lignin
,”
Biotechnol. Biofuels
,
4
(
1
), p.
56
.
23.
Li
,
X.-F.
, and
Fu
,
Y.
,
2012
, “
Preparation of Solid Acid Catalyst From Industrial Waste Kraft Lignin for Methyl Oleate Production by Esterification
,”
J. Biobased Mater. Bioenergy
,
6
(
2
), pp.
178
184
.
24.
Tran
,
T. T. V.
,
Kaiprommarat
,
S.
,
Kongparakul
,
S.
,
Reubroycharoen
,
P.
,
Guan
,
G.
,
Nguyen
,
M. H.
, and
Samart
,
C.
,
2016
, “
Green Biodiesel Production From Waste Cooking Oil Using an Environmentally Benign Acid Catalyst
,”
Waste Manage.
,
52
, pp.
367
374
.
25.
Devi
,
B. P.
,
Reddy
,
T. V. K.
,
Lakshmi
,
K. V.
, and
Prasad
,
R.
,
2014
, “
A Green Recyclable SO3H-Carbon Catalyst Derived From Glycerol for the Production of Biodiesel From FFA-Containing Karanja (Pongamia Glabra) Oil in a Single Step
,”
Bioresour. Technol.
,
153
, pp.
370
373
.
26.
Savaliya
,
M. L.
, and
Dholakiya
,
B. Z.
,
2015
, “
A Simpler and Highly Efficient Protocol for the Preparation of Biodiesel From Soap Stock Oil Using a BBSA Catalyst
,”
RSC Adv.
,
5
(
91
), pp.
74416
74424
.
27.
Rahman
,
S. H. A.
,
Choudhury
,
J. P.
,
Ahmad
,
A. L.
, and
Kamaruddin
,
A. H.
,
2007
, “
Optimization Studies on Acid Hydrolysis of Oil Palm Empty Fruit Bunch Fiber for Production of Xylose
,”
Bioresour. Technol.
,
98
(
3
), pp.
554
559
.
28.
Huang
,
M.
,
Luo
,
J.
,
Fang
,
Z.
, and
Li
,
H.
,
2016
, “
Biodiesel Production Catalyzed by Highly Acidic Carbonaceous Catalysts Synthesized Via Carbonizing Lignin in Sub- and Super-Critical Ethanol
,”
Appl. Catal. B
,
190
, pp.
103
114
.
29.
Thushari
,
P. G. I.
, and
Babel
,
S.
,
2016
, “
A Novel Environmental Benign Catalyst for Esterification of Palmitic Acid From Palm Empty Fruit Bunch
,”
Asia-Pacific Conference on Biotechnology for Waste Conversion
(
BioWC
), Hong Kong, China, Dec. 6–8, pp.
214
215.
30.
Brunauer
,
S.
,
Emmett
,
P. H.
, and
Teller
,
E.
,
1938
, “
Adsorption of Gases in Multimolecular Layers
,”
J. Am. Chem. Soc.
,
60
(
2
), pp.
309
319
.
31.
Barrett
,
E. P.
,
Joyner
,
L. G.
, and
Halenda
,
P. P.
,
1951
, “
The Determination of Pore Volume and Area Distributions in Porous Substances—I: Computations From Nitrogen Isotherms
,”
J. Am. Chem. Soc.
,
73
(
1
), pp.
373
380
.
32.
UNE-EN,
2003
, “Fat and Oil Derivatives: Fatty Acid Methyl Esters (FAME)—Determination of Ester and Linolenic Acid Methyl Ester Contents,” Standards Policy and Strategy Committee, British Standards Institute, London, Standard No.
CSN EN 14103
.https://www.en-standard.eu/csn-en-14103-fat-and-oil-derivatives-fatty-acid-methyl-esters-fame-determination-of-ester-and-linolenic-acid-methyl-ester-contents/
33.
Coates
,
J.
,
2000
, “
Interpretation of Infrared Spectra, A Practical Approach
,”
Encyclopedia of Analytical Chemistry
,
R. A.
Meyers
, ed.,
Wiley
,
Chichester, UK
.
34.
Fu
,
Z.
,
Wan
,
H.
,
Hu
,
X.
,
Cui
,
Q.
, and
Guan
,
G.
,
2012
, “
Preparation and Catalytic Performance of a Carbon-Based Solid Acid Catalyst With High Specific Surface Area
,”
React. Kinet. Mech. Catal.
,
107
(
1
), pp.
203
213
.
35.
Russo
,
P. A.
,
Antunes
,
M. M.
,
Neves
,
P.
,
Wiper
,
P. V.
,
Fazio
,
E.
,
Neri
,
F.
,
Barreca
,
F.
,
Mafra
,
L.
,
Pillinger
,
M.
,
Pinna
,
N.
, and
Valente
,
A. A.
,
2014
, “
Solid Acids With SO3H Groups and Tunable Surface Properties: Versatile Catalysts for Biomass Conversion
,”
J. Mater. Chem. A.
,
2
(
30
), pp.
11813
11824
.
36.
Nakajima
,
K.
, and
Hara
,
M.
,
2012
, “
Amorphous Carbon With SO3H Groups as a Solid Brønsted Acid Catalyst
,”
ACS Catal.
,
2
(
7
), pp.
1296
1304
.
37.
Liu
,
W.-J.
,
Tian
,
K.
,
Jiang
,
H.
, and
Yu
,
H.-Q.
,
2013
, “
Facile Synthesis of Highly Efficient and Recyclable Magnetic Solid Acid From Biomass Waste
,”
Sci. Rep.
,
3
, p. 2419.
38.
Melero
,
J. A.
,
Iglesias
,
J.
, and
Morales
,
G.
,
2009
, “
Heterogeneous Acid Catalysts for Biodiesel Production: Current Status and Future Challenges
,”
Green Chem.
,
11
(
9
), pp.
1285
1308
.
39.
Shu
,
Q.
,
Gao
,
J.
,
Nawaz
,
Z.
,
Liao
,
Y.
,
Wang
,
D.
, and
Wang
,
J.
,
2010
, “
Synthesis of Biodiesel From Waste Vegetable Oil With Large Amounts of Free Fatty Acids Using a Carbon-Based Solid Acid Catalyst
,”
Appl. Energy
,
87
(
8
), pp.
2589
2596
.
40.
Zheng
,
S.
,
Kates
,
M.
,
Dubé
,
M.
, and
McLean
,
D.
,
2006
, “
Acid-Catalyzed Production of Biodiesel From Waste Frying Oil
,”
Biomass Bioenergy
,
30
(
3
), pp.
267
272
.
41.
Liu
,
R.-L.
,
Gao
,
X.-Y.
,
An
,
L.
,
Ma
,
J.
,
Zhang
,
J.-F.
, and
Zhang
,
Z.-Q.
,
2015
, “
Fabrication of Magnetic Carbonaceous Solid Acids From Banana Peel for the Esterification of Oleic Acid
,”
RSC Adv.
,
5
(
114
), pp.
93858
93866
.
42.
Saravanan
,
K.
,
Tyagi
,
B.
,
Shukla
,
R. S.
, and
Bajaj
,
H. C.
,
2016
, “
Solvent Free Synthesis of Methyl Palmitate Over Sulfated Zirconia Solid Acid Catalyst
,”
Fuel.
,
165
, pp.
298
305
.
43.
ASTM,
2002
, “
Standard Specification for Biodiesel Fuel (B100) Blend Stock for Distillate Fuels
,”
American Society for Testing and Materials
,
West Conshohocken, PA
, Standard No.
D-6751-02
.https://www.astm.org/DATABASE.CART/HISTORICAL/D6751-02.htm
44.
JUS
,
2004
, “
Automotive Fuels—Fatty Acid Methyl Esters (FAME) for Diesel Engines-Requirements and Test Methods
,”
Standardization Institute
,
Belgrade, Serbia
, Standard No. 14214.
45.
Babaki
,
M.
,
Yousefi
,
M.
,
Habibi
,
Z.
,
Brask
,
J.
, and
Mohammadi
,
M.
,
2015
, “
Preparation of Highly Reusable Biocatalysts by Immobilization of Lipases on Epoxy-Functionalized Silica for Production of Biodiesel From Canola Oil
,”
Biochem. Eng. J.
,
101
, pp.
23
31
.
46.
Barabás
,
I.
, and
Todoruţ
,
I.-A.
,
2011
, “
Biodiesel Quality, Standards and Properties
,”
Biodiesel-Quality, Emissions and By-Products
, InTech, Rijeka, Croatia, pp.
3
28
.
47.
Ali
,
O. M.
,
Mamat
,
R.
,
Najafi
,
G.
,
Yusaf
,
T.
, and
Safieddin Ardebili
,
S. M.
,
2015
, “
Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance With Ether Additive Using Statistical Analysis and Response Surface Methods
,”
Energies
,
8
(
12
), pp.
14136
14150
.
48.
Ghazali
,
W. N. M. W.
,
Mamat
,
R.
,
Masjuki
,
H.
, and
Najafi
,
G.
,
2015
, “
Effects of Biodiesel From Different Feedstocks on Engine Performance and Emissions: A Review
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
585
602
.
49.
Fu
,
J.
,
Hue
,
B. T. B.
, and
Turn
,
S. Q.
,
2017
, “
Oxidation Stability of Biodiesel Derived From Waste Catfish Oil
,”
Fuel
,
202
, pp.
455
463
.
50.
Patil
,
P. D.
,
Gude
,
V. G.
, and
Deng
,
S.
,
2009
, “
Biodiesel Production From Jatropha Curcas, Waste Cooking, and Camelina Sativa Oils
,”
Ind. Eng. Chem. Res.
,
48
(
24
), pp.
10850
10856
.
51.
Christensen
,
E.
, and
McCormick
,
R. L.
,
2014
, “
Long-Term Storage Stability of Biodiesel and Biodiesel Blends
,”
Fuel Process. Technol.
,
128
(
Suppl. C
), pp.
339
348
.
52.
Chokri
,
B.
,
Ridha
,
E.
,
Rachid
,
S.
, and
Jamel
,
B.
,
2012
, “
Experimental Study of a Diesel Engine Performance Running on Waste Vegetable Oil Biodiesel Blend
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032202
.
53.
Singh
,
B.
,
Kaur
,
J.
, and
Singh
,
K.
,
2010
, “
Production of Biodiesel From Used Mustard Oil and Its Performance Analysis in Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
031001
.
54.
Mistri
,
G. K.
,
Aggarwal
,
S. K.
,
Longman
,
D.
, and
Agarwal
,
A. K.
,
2015
, “
Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011202
.
You do not currently have access to this content.