This paper describes high-temperature reliability, particularly creep and creep rupture behavior of three engineering ceramics—silicon nitride, silicon carbide, and alumina-based silicon-carbide-particulate ceramics—which are considered the most potential candidates for the use of blades of high-efficiency ceramic gas turbine. The structural reliability of silicon nitride is very often limited due to the softening of glassy phases formed at grain boundaries. On the other hand, silicon carbide, which generally does not contain glassy phase at the grain boundaries, shows excellent creep resistance even at very high temperatures. Finally, it is shown that creep resistance of alumina can be markedly improved by dispersing nano-sized silicon carbide particles into the grain boundary.

1.
Ohji
,
T.
, and
Yamauchi
,
Y.
,
1992
, “
Long-Term Tensile Creep Testing for Advanced Ceramics
,”
J. Am. Ceram. Soc.
,
75
, pp.
2304
2307
.
2.
Ferber
,
M. K.
, and
Jenkins
,
M. G.
,
1992
, “
Evaluation of the Strength and Creep-Fatigue Behavior of Hot Isostatically Pressed Silicon Nitride
,”
J. Am. Ceram. Soc.
,
75
, pp.
2453
2462
.
3.
Luecke
,
W. E.
,
Wiederhorn
,
S. M.
,
Hockey
,
B. J.
,
Krause
,
R. F.
Jr.
, and
Long
,
G. G.
,
1995
, “
Cavitation Contributes Substantially to Tensile Creep of Silicon Nitride
,”
J. Am. Ceram. Soc.
,
78
, pp.
2085
2096
.
4.
Ohji
,
T.
, and
Yamauchi
,
Y.
,
1993
, “
Tensile Creep and Creep Rupture Behaviors of Monolithic and SiC Whisker Reinforced Silicon Nitride Ceramics
,”
J. Am. Ceram. Soc.
,
76
, pp.
3105
3112
.
5.
Quinn
,
G. D.
,
1990
, “
Fracture Mechanism Maps for Advanced Structural Ceramics, Part 1
,”
J. Mater. Sci.
,
25
, pp.
4361
4376
.
6.
Wiederhorn
,
S. M.
,
Hockey
,
B. J.
,
Cranmer
,
D. C.
, and
Yeckley
,
R.
,
1993
, “
Transient Creep Behavior of Hot Isostatically Pressed Silicon Nitride
,”
J. Mater. Sci.
,
28
, pp.
445
453
.
7.
Evans
,
A. G.
, and
Rana
,
A.
,
1980
, “
High Temperature Failure Mechanisms in Ceramics
,”
Acta Metall.
,
28
, pp.
129
141
.
8.
Thouless
,
M. D.
, and
Evans
,
A. G.
,
1984
, “
Nucleation of Cavities During Creep of Liquid-Phase-Sintered Materials
,”
J. Am. Ceram. Soc.
,
67
, pp.
721
727
.
9.
Monkman, F. C., and Grant, N. J., 1956, “An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep Rupture Tests,” Proc., ASTM, 56, pp. 593–620.
10.
Marion
,
J. D.
,
Evans
,
A. G.
,
Drory
,
M. D.
, and
Clarke
,
D. R.
,
1983
, “
High Temperature Failure Initiation in Liquid Phase Sintered Materials
,”
Acta Metall.
,
31
, pp.
1445
1457
.
11.
Ohji
,
T.
, and
Yamauchi
,
Y.
,
1994
, “
Difusional Crack Growth and Creep Rupture of Silicon Carbide Doped With Alumina
,”
J. Am. Ceram. Soc.
,
77
, pp.
678
682
.
12.
Lane
,
J. E.
,
Carter
,
C. H.
, Jr.
, and
Davis
,
R. F.
,
1988
, “
Kinetics and Mechanisms of High Temperature Creep in Silicon Carbide: III, Sintered a-Silicon Carbide
,”
J. Am. Ceram. Soc.
,
71
, pp.
281
295
.
13.
Chuang
,
T.-J.
,
1982
, “
A Diffusive Crack-Growth Model for Creep Fracture
,”
J. Am. Ceram. Soc.
,
65
, pp.
93
103
.
14.
Niihara
,
K.
,
1991
, “
New Design Concept of Structural Ceramics-Ceramic Nanocomposite-
,”
J. Ceram. Soc. Jpn.
,
99
, pp.
974
982
.
15.
Ohji
,
T.
,
Nakahira
,
A.
,
Hirano
,
T.
, and
Niihara
,
K.
,
1994
, “
Tensile Creep Behavior of Alumina/Silicon Carbide Nanocomposite
,”
J. Am. Ceram. Soc.
,
77
, pp.
3259
3262
.
16.
Thompson
,
A.
,
Chan
,
H. M.
, and
Harmer
,
M. P.
,
1997
, “
Tensile Creep of Alumina-Silicon Carbide “Nanocomposite”, 
J. Am. Ceram. Soc.
,
80
, pp.
2221
2228
.
17.
Ohji
,
T.
,
Hirano
,
T.
,
Nakahira
,
A.
, and
Niihara
,
K.
,
1996
, “
Particle/Matrix Interface and Its Role in Creep Inhibition Alumina/Silicon Carbide Nanocomposite
,”
J. Am. Ceram. Soc.
,
79
, pp.
33
45
.
18.
Ohji
,
T.
,
Kusunose
,
T.
, and
Niihara
,
K.
,
1998
, “
Threshold Stress in Creep of Alumina/Silicon Carbide Nanocomposite
,”
J. Am. Ceram. Soc.
,
81
, pp.
2713
2716
.
19.
Ashby
,
M. F.
,
1969
, “
On Interfacial-Reaction Control of Nabarro-Herring Creep and Sintering
,”
Scr. Metall.
,
3
, pp.
837
842
.
20.
Raj
,
R.
,
1993
, “
Fundamental Research in Structural Ceramics for Service Near 2000°C
,”
J. Am. Ceram. Soc.
,
76
, pp.
2147
2174
.
You do not currently have access to this content.