Abstract

The larger current densities accompanying increased output of power modules are expected to degrade solder joints by electromigration. Although previous research has experimentally studied electromigration in solder, die-attach solder joints in Si-based power modules have not been studied because the average current density of the die-attach solder is much smaller than the threshold of electromigration degradation. However, in die-attach solder, the electromigration degradation may appear where current crowding occurs. This report describes electromigration analysis of die-attach solder joints for Si-based power modules using an electrical-thermal-stress-atomic coupled model. First, we validate our numerical implementation and show that it can reproduce the distributions of vacancy concentrations and hydrostatic stress almost the same as the analytical solutions even at current densities assuming current crowding. We then simulate the die-attach solder joint with an Si-based power device and a substrate. Due to current crowding, the current density at the edge of the solder exceeds the electromigration threshold. Unlike general electromigration phenomena, the vacancy concentration increases at the center and decreases at the edges of the solder joint, regardless of whether it is on the cathode side or anode side, due to the longitudinal driving force in the solder joint generated by the current crowding. Creep strain increased remarkably at the anode edge and the cathode center. The absolute vacancy concentration clearly increased with increasing current density and size ratio. Creep strain significantly increased with increasing current density, size ratio, and temperature.

References

1.
Kadoguchi
,
T.
,
Gotou
,
K.
,
Yamanaka
,
K.
,
Nagao
,
S.
, and
Suganuma
,
K.
,
2015
, “
Electromigration Behavior in Cu/Ni-P/Sn-Cu Based Joint System With Low Current Density
,”
Microelectron. Reliab.
,
55
(
12
), pp.
2554
2559
.10.1016/j.microrel.2015.10.003
2.
Tan
,
C. M.
,
2010
,
Electromigration in ULSI Interconnections
,
World Scientific Publishing Co. Pte. Ltd
., Singapore.
3.
Liu
,
Y.
,
Liang
,
L.
,
Irving
,
S.
, and
Luk
,
T.
,
2008
, “
3D Modeling of Electromigration Combined With Thermal-Mechanical Effect for IC Device and Package
,”
Microelectron. Reliab.
,
48
(
6
), pp.
811
824
.10.1016/j.microrel.2008.03.021
4.
Kim
,
D.
,
2009
, “
Three-Dimensional Model for Electromigration Induced Evolution of Flip Chip Solder Joints
,”
J. Mech. Sci. Technol.
,
23
(
2
), pp.
504
511
.10.1007/s12206-008-1102-5
5.
Tanie
,
H.
,
Chiwata
,
N.
,
Wakano
,
M.
,
Fujiyoshi
,
M.
, and
Fujiwara
,
S.
,
2011
, “
Development of Highly Reliable BGA and Flip-Chip Structure by Using Cu-Cored Solder Ball
,”
ASME
Paper No. IPACK2011-52115.10.1115/IPACK2011-52115
6.
Tanie
,
H.
,
Fujiwara
,
S.
,
Chiwata
,
N.
,
Fujiyoshi
,
M.
,
Shintani
,
H.
, and
Harubeppu
,
Y.
,
2012
, “
Electromigration Failure Analysis of Flip-Chip Solder Joint by Using Void Growth Simulation and Synchrotron Radiation X-Ray Microtomography
,”
Proceedings of IEEE 4th Electronic System-Integration Technology Conference
, ESTC, Amsterdam, The Netherlands, Sept. 17–20, pp.
750
755
.10.1109/ESTC.2012.6542076
7.
Sadasiva
,
S.
, and
Subbarayan
,
G.
,
2015
, “
Diffcode: A System for the Simulation of Diffusion Driven Phase Evolution in Solids
,”
ASME
Paper No. IPACK2011-48655.10.1115/IPACK2011-48655
8.
Ceric
,
H.
, and
Selberherr
,
S.
,
2015
, “
Compact Model for Solder Bump Electromigration Failure
,” Proceedings of IEEE International Conference on Interconnect Technology (
IITC
), Grenoble, France, May 18–21, pp.
159
161
.10.1109/IITC-MAM.2015.7325651
9.
Xu
,
J.
,
Niu
,
Y.
,
Cain
,
S. R.
,
McCann
,
S.
,
Lee
,
H. H.
,
Ahmed
,
G. R.
, and
Park
,
S. B.
,
2018
, “
The Experimental and Numerical Study of Electromigration in 2.5D Packaging
,” Proceedings of IEEE Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 29–June 1, pp.
483
489
.10.1109/ECT C.2018.00077
10.
Kadoguchi
,
T.
,
Sakai
,
T.
,
Sei
,
T.
,
Take
,
N.
,
Yamanaka
,
K.
,
Nagao
,
S.
, and
Suganuma
,
K.
,
2017
, “
Effect of Sn Crystallographic Orientation on Solder Electromigration and Ni Diffusion in Cu/Ni Plating/Sn–0.7Cu Joint at Low Current Density
,”
J. Mater. Sci. Mater. Electron.
,
28
(
17
), pp.
12630
12639
.10.1007/s10854-017-7087-z
11.
Choi
,
U.-M.
,
Blaabjerg
,
F.
, and
Jorgensen
,
S.
,
2017
, “
Study on Effect of Junction Temperature Swing Duration on Lifetime of Transfer Molded Power IGBT Modules
,”
Proc. IEEE Trans. Power Electron.
,
32
(
8
), pp.
6434
6443
.10.1109/TPEL.2016.2618917
12.
Miura
,
S.
,
Ookura
,
Y.
,
Okabe
,
Y.
, and
Momota
,
S.
,
2011
, “
Development of Power Devices for Power Cards
,”
Denso Tech. Rev.
,
16
, pp.
38
45
.https://www.denso.com/jp/ja/-/media/global/business/innovation/review/16/16-doc-7-ja.pdf
13.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2020
, “
Degradation Analysis of Electromigration in Power Module by Electro-Thermal-Stress Coupled Model
,”
Proceedings of 34th JIEP Annual Meeting, Yokohama-shi, Kanagawa
, Mar. 3–5, Paper No. 3C5-01.
14.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2020
, “
Evaluation of Electromigration for Solder Joints in Power Modules Using Coupled Electro-Thermal-Stress Analysis
,”
30th Proceedings of Microelectronics Symposium
, Suita-shi, Osaka, Japan, Sept. 17–18, Paper No. 2B3-1.10.11486/mes.30.0_201
15.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2020
, “
Electromigration Analysis of Solder Joints for Power Modules Using an Electrical-Thermal-Stress Coupled Model
,”
ASME
Paper No. IPACK2020-2556.10.1115/IPACK2020-2556
16.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2021
, “
Evaluation of Electromigration for Solder Joints in Power Modules Using Coupled Electro-Thermal-Stress-Atomic Analysis
,”
Proceedings of 35th JIEP Annual Meeting
, Online, Mar. 17–19, Paper No. 18B1-01.
17.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2021
, “
Electromigration Analysis of Solder Joints for Power Modules Using an Electrical-Thermal-Stress-Atomic Coupled Mode
,”
ASME
Paper No. IPACK2021-69882.10.1115/IPACK2021-69882.
18.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2022
, “
Electromigration Analysis of Solder Joints for Power Modules Using an Electrical–Thermal-Stress Coupled Model
,”
ASME J. Electron. Packag.
,
144
(
2
), p.
021102
.10.1115/1.4055394
19.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2019
, “
Degradation Analysis of Electromigration by Electro-Thermal-Stress Coupled Model
,”
Proceedings of 33th JIEP Annual Meeting
, Bunkyo-ku, Tokyo, Japan, Mar. 11–13, Paper No. 13C2-03.
20.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2019
, “
Evaluation of Electromigration in Power Module Using Coupled Electro-Thermal-Stress Analysis
,”
The 29th Proceedings of Microelectronics Symposium
, Suita-shi, Osaka, Japan, Sept. 12–13, Paper No. 2A3-03.
21.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2019
, “
Electromigration Analysis of Power Modules by Electrical-Thermal-Mechanical Coupled Model
,”
ASME
Paper No. IMECE2019-10558.10.1115/IMECE2019-10558
22.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2020
, “
Evaluation of Electromigration in Bonding Wire for Power Module Using Coupled Electro-Thermal-Stress Analysis
,”
C-Abstr. IEICE Trans. Electron.
,
103
(
3
), pp.
129
136
.https://search.ieice.org/bin/summary.php?id=j103-c_3_129&category=C&year=2020&lang=2&abst=j
23.
Orio
,
R. L.
,
Ceric
,
H.
, and
Selberherr
,
S.
,
2010
, “
Physically Based Models of Electromigration: From Black's Equation to Modern TCAD Models
,”
Microelectron. Reliab.
,
50
(
6
), pp.
775
789
.10.1016/j.microrel.2010.01.007
24.
Basaran
,
C.
, and
Lin
,
M.
,
2007
, “
Electromigration Induced Strain Field Simulations for Nanoelectronics Lead-Free Solder Joints
,”
Int. J. Solids Struct.
,
44
(
14–15
), pp.
4909
4924
.10.1016/j.ijsolstr.2006.12.011
25.
Yao
,
W.
, and
Basaran
,
C.
,
2012
, “
Electromigration Analysis of Solder Joints Under ac Load: A Mean Time to Failure Model
,”
J. Appl. Phys.
,
111
(
6
), p.
063703
.10.1063/1.3693532
26.
The Japan Society of Mechanical Engineers
,
1986
,
JSME Data Book of Heat transfer
4th ed.,
Maruzen Company
Limited, Tokyo, Japan
.
27.
Gaston
,
D.
,
Newman
,
C.
,
Hansen
,
G.
, and
Lebrun-Grandié
,
D.
,
2009
, “
MOOSE: A Parallel Computational Framework for Coupled Systems of Nonlinear Equations
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
1768
1778
.10.1016/j.nucengdes.2009.05.021
28.
Sukharev
,
V.
,
Zschech
,
E.
, and
Nix
,
W. D.
,
2007
, “
A Model for Electromigration-Induced Degradation Mechanisms in Dual-Inlaid Copper Interconnects: Effect of Microstructure
,”
J. Appl. Phys.
,
102
(
5
), p.
053505
.10.1063/1.2775538
29.
Blech
,
I. A.
,
1976
, “
Electro in Thin Aluminum Films on Titanium Nitride
,”
J. Appl. Phys.
,
47
(
4
), pp.
1203
1208
.10.1063/1.322842
You do not currently have access to this content.