Abstract

Single unit cell thick lattice frame materials have applications in efficient heat exchangers. This study is focused on strut-based sandwich-type configurations obtained through reticulation of unit cell topologies of tetrakaidecahedron (TKD), octet, and rhombic dodecahedron (DDC) shapes at a porosity of 0.9 with water as the working fluid. Interfacial heat transfer coefficient values on struts and endwalls were determined by imposing constant temperature boundary condition. Averaged heat transfer coefficient on the endwall was the highest for tetrakaidecahedron lattice whereas rhombic dodecahedron lattice exhibited the highest average interfacial heat transfer coefficients on the struts. Flow analysis showed the presence of strong secondary flow features on planes normal to the mean flow direction that demonstrated the unique flow mixing capabilities of these lattices. Reported interfacial heat transfer coefficient at struts and endwall can be used in volume-averaged computations of metal foams (representative of lattices' flow and thermal properties) under local thermal nonequilibrium.

References

1.
Banhart
,
J.
,
2000
, “
Manufacturing Routes for Metallic Foams
,”
JOM
,
52
(
12
), pp.
22
27
.10.1007/s11837-000-0062-8
2.
Li
,
Y.
,
Gong
,
L.
,
Xu
,
M.
, and
Joshi
,
Y.
,
2021
, “
A Review of Thermo-Hydraulic Performance of Metal Foam and Its Application as Heat Sinks for Electronics Cooling
,”
ASME J. Electron. Packag.
,
143
(
3
), p.
030801
.10.1115/1.4048861
3.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.10.1115/1.2826001
4.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
5.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
6.
Dukhan
,
N.
,
Bağcı
,
Ö.
, and
Özdemir
,
M.
,
2014
, “
Metal Foam Hydrodynamics: Flow Regimes From pre-Darcy to Turbulent
,”
Int. J. Heat Mass Transfer
,
77
, pp.
114
123
.10.1016/j.ijheatmasstransfer.2014.05.017
7.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.10.1016/j.ijheatmasstransfer.2012.03.017
8.
Feng
,
S.
,
Shi
,
M.
,
Li
,
Y.
, and
Lu
,
T. J.
,
2015
, “
Pore-Scale and Volume-Averaged Numerical Simulations of Melting Phase Change Heat Transfer in Finned Metal Foam
,”
Int. J. Heat Mass Transfer
,
90
, pp.
838
847
.10.1016/j.ijheatmasstransfer.2015.06.088
9.
Singh
,
P.
,
Nithyanandam
,
K.
, and
Mahajan
,
R. L.
,
2020
, “
An Experimental and Numerical Investigation of Forced Convection in High Porosity Aluminum Foams Subjected to Jet Array Impingement in Channel-Flow
,”
Int. J. Heat Mass Transfer
,
149
, p.
119107
.10.1016/j.ijheatmasstransfer.2019.119107
10.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Critical Evaluation of Additively Manufactured Metal Lattices for Viability in Advanced Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
168
, p.
120858
.10.1016/j.ijheatmasstransfer.2020.120858
11.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2004
, “
Fluid-Flow and Endwall Heat-Transfer Characteristics of an Ultralight Lattice-Frame Material
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1129
1140
.10.1016/j.ijheatmasstransfer.2003.10.012
12.
Kim
,
T.
,
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Convective Heat Dissipation With Lattice-Frame Materials
,”
Mech. Mater.
,
36
(
8
), pp.
767
780
.10.1016/j.mechmat.2003.07.001
13.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2005
, “
Contribution of Vortex Structures and Flow Separation to Local and Overall Pressure and Heat Transfer Characteristics in an Ultralightweight Lattice Material
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
4243
4264
.10.1016/j.ijheatmasstransfer.2005.04.026
14.
Yan
,
H.
,
Yang
,
X.
,
Lu
,
T.
, and
Xie
,
G.
,
2017
, “
Convective Heat Transfer in a Lightweight Multifunctional Sandwich Panel With X-Type Metallic Lattice Core
,”
Appl. Therm. Eng.
,
127
, pp.
1293
1304
.10.1016/j.applthermaleng.2017.08.081
15.
Yan
,
H.
,
Zhang
,
Q.
,
Chen
,
W.
,
Xie
,
G.
,
Dang
,
J.
, and
Lu
,
T. J.
,
2020
, “
An X-Lattice Cored Rectangular Honeycomb With Enhanced Convective Heat Transfer Performance
,”
Appl. Therm. Eng.
,
166
, p.
114687
.10.1016/j.applthermaleng.2019.114687
16.
Jin
,
X.
,
Shen
,
B.
,
Yan
,
H.
,
Sunden
,
B.
, and
Xie
,
G.
,
2018
, “
Comparative Evaluations of Thermofluidic Characteristics of Sandwich Panels With X-Lattice and Pyramidal-Lattice Cores
,”
Int. J. Heat Mass Transfer
,
127
, pp.
268
282
.10.1016/j.ijheatmasstransfer.2018.07.087
17.
Shen
,
B.
,
Yan
,
H.
,
Xue
,
H.
, and
Xie
,
G.
,
2018
, “
The Effects of Geometrical Topology on Fluid Flow and Thermal Performance in Kagome Cored Sandwich Panels
,”
Appl. Therm. Eng.
,
142
, pp.
79
88
.10.1016/j.applthermaleng.2018.06.080
18.
Saha
,
K.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2013
, “
Heat Transfer Enhancement and Thermal Performance of Lattice Structures for Internal Cooling of Airfoil Trailing Edges
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011001
.10.1115/1.4007277
19.
Liang
,
D.
,
Bai
,
W.
,
Chen
,
W.
, and
Chyu
,
M. K.
,
2020
, “
Investigating the Effect of Element Shape of the Face-Centered Cubic Lattice Structure on the Flow and Endwall Heat Transfer Characteristics in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
153
, p.
119579
.10.1016/j.ijheatmasstransfer.2020.119579
20.
Chaudhari
,
A.
,
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Experimental Investigation of Heat Transfer and Fluid Flow in Octet-Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
143
, pp.
64
75
.10.1016/j.ijthermalsci.2019.05.003
21.
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Fluid Flow and Heat Transfer Characteristics of Octet Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
137
, pp.
253
261
.10.1016/j.ijthermalsci.2018.11.031
22.
Broughton
,
J.
, and
Joshi
,
Y. K.
,
2020
, “
Comparison of Single-Phase Convection in Additive Manufactured Versus Traditional Metal Foams
,”
ASME J. Heat Transfer
,
142
(
8
), p.
082201
.10.1115/1.4046972
23.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Numerical Investigation on Conjugate Heat Transfer in Octet-Shape-Based Single Unit Cell Thick Metal Foam
,”
Int. Commun. Heat Mass Transfer
,
121
, p.
105090
.10.1016/j.icheatmasstransfer.2020.105090
24.
Shahrzadi
,
M.
,
Emami
,
M. D.
, and
Akbarzadeh
,
A. H.
,
2022
, “
Heat Transfer in BCC Lattice Materials: Conduction, Convection, and Radiation
,”
Compos. Struct.
,
284
, p.
115159
.10.1016/j.compstruct.2021.115159
25.
Son
,
K. N.
,
Weibel
,
J. A.
,
Kumaresan
,
V.
, and
Garimella
,
S. V.
,
2017
, “
Design of Multifunctional Lattice-Frame Materials for Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
115
, pp.
619
629
.10.1016/j.ijheatmasstransfer.2017.07.073
26.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Bianco
,
N.
,
Chiu
,
W. K.
, and
Naso
,
V.
,
2014
, “
Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112601
.10.1115/1.4028113
27.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Flow and Thermal Transport Characteristics of Triply-Periodic Minimal Surface (TPMS)-Based Gyroid and Schwarz-P Cellular Materials
,”
Numer. Heat Transfer, Part A
,
79
(
8
), pp.
553
569
.10.1080/10407782.2021.1872260
28.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Endwall Heat Transfer Characteristics of Octahedron Family Lattice-Frame Materials
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105522
.10.1016/j.icheatmasstransfer.2021.105522
You do not currently have access to this content.