With the rapid development of microelectromechanical systems (MEMS) in IT industry, the heat flux in microchannel has reached a high level which demands preferable cooling technology. Water cooling has become a favor cooling approach in electronic microdevices due to better thermal performance than air cooling method. In the present paper, thermal performance in microchannels with grooves and obstacles are investigated numerically. The height and width of the rectangular microchannel are 200 and 50 μm, respectively. As a simple modification of dimple/protrusion, the groove/obstacle diameter is 100 μm and the depth is 20 μm. Different arrangements of grooves and obstacles are considered on Reynolds range of 100–900. The numerical results show that groove/obstacle structure is effective for cooling enhancement in microchannel. Among the cases in this research, the normalized Nusselt number Nu/Nu0 is within the range of 1.446–26.19, while the pressure penalty f/f0 has a much larger range from 0.86 to 110.18 depending on specific orientation. Field synergy analysis and performance evaluation plot are adopted to discuss the mechanism of heat transfer enhancement and energy saving performance integrating the pumping performance. From the viewpoint of energy saving, groove on single surface (case 1) has the best performance. Furthermore, performances of grooved microchannels are compared with that of dimpled microchannels which were discussed in the author’s previous research. The results indicate grooved microchannels have larger range of both Nu/Nu0 and f/f0 and some grooved cases possess high TP than dimpled microchannels.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat-Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
3.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3060
3067
.10.1016/j.ijheatmasstransfer.2006.02.011
4.
Dix
,
J.
,
Jokar
,
A.
, and
Martinsen
,
R.
,
2008
, “
A Microchannel Heat Exchanger for Electronics Cooling Applications
,”
ASME Paper No. 08-ICNMM-62351
.
5.
Lee
,
P. S.
, and
Teo
,
C. J.
,
2008
, “
Heat Transfer Enhancement in Microchannels Incorporating Slanted Grooves
,”
ASME Paper No. 08-MNHT-52374
.
6.
Baghernezhad
,
N.
, and
Abouali
,
O.
,
2008
, “
Numerical Investigation of Single Phase Heat Transfer Enhancement in a Microchannel With Grooved Surfaces
,”
ASME Paper No. 08-ICNMM-62262
.
7.
Arik
,
M.
, and
Bunker
,
R. S.
,
2006
, “
Electronics Packaging Cooling: Technologies From Gas Turbine Engine Cooling
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
215
225
.10.1115/1.2229219
8.
Jami
,
F. T.
,
Robert
, V
.
, and
Yildiz
,
B.
,
2011
, “
A Review of Cooling in Microchannels
,”
Heat Transfer Eng.
,
32
(
7–8
), pp.
527
541
.10.1080/01457632.2010.506390
9.
Xie
,
G. N.
,
Liu
,
J.
,
Zhang
,
W. H.
, and
Sunder
,
B.
,
2012
, “
Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel Heat Sink for Chip Cooling
,”
ASME J. Electron. Packag.
,
134
, pp.
1
6
.10.1115/1.4023035
10.
Xie
,
G. N.
,
Liu
,
J.
,
Liu
,
Y. Q.
,
Sunder
,
B.
, and
Zhang
,
W. H.
,
2013
, “
Comparative Study of Thermal Performance of Longitudinal and Transversal-Wavy Microchannel Heat Sinks for Electronic Cooling
,”
ASME J. Electron. Packag.
,
135
, pp.
1
9
.10.1115/1.4023530
11.
Xie
,
G. N.
,
Chen
,
Z. Y.
,
Sunder
,
B.
, and
Zhang
,
W. H.
,
2013
, “
Numerical Predictions of the Flow and Thermal Performance of Water-Cooled Single-Layer and Double-Layer Wavy Microchannel Heat Sinks
,”
Numer. Heat Transfer, Part A
,
63
, pp.
201
225
.10.1080/10407782.2013.730445
12.
Xie
,
G. N.
,
Chen
,
Z. Y.
,
Sunder
,
B.
, and
Zhang
,
W. H.
,
2013
, “
Comparative Study of the Flow and Thermal Performance of Liquid-Cooling Parallel-Flow and Counter-Flow Double-Layer Wavy Microchannel Heat Sinks
,”
Numer. Heat Transfer, Part A
,
64
, pp.
30
55
.10.1080/10407782.2013.773811
13.
Afanasyev
, V
. N.
,
Chudnovsky
,
Y. P.
, and
Leontiev
,
A. I.
, and Roganov, P. S.,
1993
, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
,
7
(
1
), pp.
1
8
.10.1016/0894-1777(93)90075-T
14.
Griffith
,
T. S.
,
Luai
,
A.
, and
Han
,
J.
,
2003
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Dimples
,”
J. Turbomach.
,
125
, pp.
555
564
.10.1115/1.1571850
15.
Elyyan
,
M. A.
, and
Danesh
,
K. T.
,
2010
, “
Effect of Coriolis Forces in a Rotating Channel With Dimples and Protrusions
,”
Int. J. Heat Fluid Flow
,
31
, pp.
1
18
.10.1016/j.ijheatfluidflow.2009.10.002
16.
Elyyan
,
M. A.
, and
Danesh
,
K. T.
,
2010
, “
Investigation of Coriolis Forces Effect of Flow Structure and Heat Transfer Distribution in a Rotating Dimpled Channel
,”
ASME Paper No. 10-GT-22657
.
17.
Ligrani
,
P. M.
,
Harrison
,
J. L.
, and
Mahmmod
,
G. I.
, and Hill, M. L.,
2001
, “
Flow Structure Due to Dimple Depressions on a Channel Surface
,”
Phys. Fluids
,
13
(
11
), pp.
3442
3451
.10.1063/1.1404139
18.
Ligrani
,
P. M.
,
Mahmood
,
G. I.
,
Harrison
,
J. L.
,
Clayton
,
C. M.
, and
Nelson
,
D. L.
,
2001
, “
Flow Structure and Local Nusselt Number Variation in a Channel With Dimples and Protrusions on Opposite Walls
,”
Int. J. Heat Mass Transfer
,
44
, pp.
4413
4425
.10.1016/S0017-9310(01)00101-6
19.
Mahmood
,
G. I.
,
Sabbagh
,
M. Z.
, and
Ligrani
,
P. M.
,
2001
, “
Heat Transfer in a Channel With Dimples and Protrusions on Opposite Walls
,”
J. Thermophys. Heat Transfer
,
15
(
3
), pp.
275
283
.10.2514/2.6623
20.
Rao
,
Y.
,
Wan
,
C. Y.
, and
Xu
,
Y. M.
, and Zang, S. S.,
2011
, “
Spatially-Resolved Heat Transfer Characteristics in Channels With Pin Fin and Pin Fin-Dimple Arrays
,”
Int. J. Therm. Sci.
,
50
, pp.
2277
2289
.
21.
Xie
,
G. N.
,
Sunden
,
B.
, and
Zhang
,
W. H.
,
2011
, “
Comparisons of Pins/Dimples/Protrusions Cooling Concepts for a Turbine Blade Tip-Wall at High Reynolds Numbers
,”
J. Heat Transfer
,
133
, pp.
1
9
.10.1115/1.4003558
22.
Silva
,
C.
,
Marotta
,
E.
, and
Fletcher
,
L.
,
2007
, “
Flow Structure and Enhanced Heat Transfer in Channel Flow With Dimpled Surfaces: Applications to Heat Sinks in Microelectronic Cooling
,”
ASME J. Electron. Packag.
,
129
, pp.
157
166
.10.1115/1.2721087
23.
Silva
,
C.
,
Park
,
D.
,
Marotta
,
E.
, and
Fletcher
,
L.
,
2009
, “
Optimization of Fin Performance in a Laminar Channel Flow Through Dimpled Surfaces
,”
Trans. ASME, Ser. C: J. Heat Transfer
,
131
(
2
), pp.
1
9
.10.1115/1.2994712
24.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2007
, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a MicroChannel With One Dimpled Wall
,”
ASME J. Electron. Packag.
,
129
, pp.
63
70
.10.1115/1.2429711
25.
Lan
,
J. B.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2012
, “
Flow and Heat Transfer in Microchannels With Dimples and Protrusions
,”
J. Heat Transfer
,
134
, pp.
1
9
.10.1115/1.4005096
26.
Abouali
,
O.
, and
Baghernezhad
,
N.
,
2010
, “
Numerical Investigation of Heat Transfer Enhancement in a Microchannel With Grooved Surfaces
,”
J. Heat Transfer
,
132
, pp.
1
8
.10.1115/1.4000862
27.
Solovitz
,
S. A.
, and
Conder
,
T. E.
,
2010
, “
Flow and Thermal Investigation of a Grooved-Enhanced Minichannel Application
,”
J. Thermal Sci. Eng. Appl.
,
2
, pp.
1
11
.10.1115/1.4002411
28.
Conder
,
T. E.
, and
Solovitz
,
S. A.
,
2011
, “
Computational Optimization of a Groove-Enhanced Minichannel
,”
Heat Transfer Eng.
,
32
(
10
), pp.
876
890
.10.1080/01457632.2011.548632
29.
Ridouane
,
E. H.
, and
Campo
,
A.
,
2008
, “
Heat Transfer Enhancement of Air Flowing Across Grooved Channels: Joint Effects of Channel Height and Groove Depth
,”
J. Heat Transfer
,
130
, pp.
1
7
.10.1115/1.2790022
30.
Liu
,
Y.
,
Cui
,
J.
,
Li
,
W.
, Zhang, N.,
2011
, “
Effect of Surface Microstructure on Microchannel Heat Transfer Performance
,”
J. Heat Transfer
,
133
, pp.
1
6
.
31.
Fan
,
J. F.
,
Ding
,
W. K.
,
Zhang
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
A Performance Evaluation Plot of Enhanced Heat Transfer Techniques Oriented for Energy-Saving
,”
Int. J. Heat Mass Transfer
,
52
, pp.
33
44
.10.1016/j.ijheatmasstransfer.2008.07.006
32.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
33.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.10.2514/2.1964
34.
Ligrani
,
P. M.
,
2012
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, pp.
1
32
.
35.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
,
1998
, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
41
(
14
), pp.
2221
2225
.10.1016/S0017-9310(97)00272-X
You do not currently have access to this content.