This paper presents the effect of indium (In) content on the melting temperature, wettabililty, dross formation, and oxidation characteristics of the Sn-2Ag-3Bi-xIn alloy. The melting temperature of the Sn-2Ag-3Bi-xIn alloy (2 ≤ x ≤ 6) was lower than 473 K. The melting range between the solidus and liquidus temperatures was approximately 20 K, irrespective of the indium content. As the indium content increased, the wetting time increased slightly and the maximum wetting force remained to be mostly constant. The dross formation decreased to approximately 50% when adding 1In to Sn-2Ag-3Bi, and no dross formation was observed in the case of Sn-2Ag-3Bi-xIn alloy (x ≥ 1.5) at 523 K for 180 min. Upon approaching the inside of the oxidized solder of the Sn-2Ag-3Bi-1.5In alloy from the surface, the O and In contents decreased and the Sn content increased based on depth profiling analysis using Auger electron spectroscopy (AES). The mechanism for restraining dross (Sn oxidation) of Sn-2Ag-3Bi alloy with addition of indium may be due to surface segregation of indium. This is due to the lower formation energy of indium oxide than those of Sn oxidation.

References

1.
Wood
,
E. P.
, and
Nimmo
,
K. L.
,
1994
, “
In Search of New Lead-Free Electronic Solders
,”
J. Electron. Mater.
23
, pp.
709
713
.10.1007/BF02651363
2.
Miao
,
H.-W.
,
Duh
,
J.-G.
,
2001
, “
Microstructural Evolution in Sn-Bi and Sn-Bi-Cu Solder Joints Under Thermal Aging
,”
Mater. Chem. Phys.
,
71
, pp.
255
271
.10.1016/S0254-0584(01)00298-X
3.
Islam
,
M. N.
,
Chan
,
Y. C.
,
Rizvi
,
M. J.
, and
Jillek
,
W.
,
2005
, “
Investigations of Interfacial Reactions of Sn-Zn Based and Sn-Ag-Cu Lead-Free Solder Alloys as Replacement for Sn-Pb Solder
,”
J. Alloys Compd.
,
400
, pp.
136
144
.10.1016/j.jallcom.2005.03.053
4.
Zhou
,
J.
,
Sun
,
Y.
,
Xue
,
F.
,
2005
, “
Properties of Low Melting Point Sn–Zn–Bi Solders
,”
J. Alloys Compd.
,
397
, pp.
260
264
.10.1016/j.jallcom.2004.12.052
5.
Duan
,
L. L.
,
Yu
,
D. Q.
,
Han
,
S. Q.
,
Ma
,
H. T.
, and
Wang
,
L.
,
2004
, “
Microstructural Evolution of Sn–9Zn–3Bi Solder/Cu Joint During Long-Term Aging at 170 °C
,”
J. Alloys Compd.
,
381
, pp.
202
207
.10.1016/j.jallcom.2004.03.124
6.
Garcia
,
L. R.
,
Osório
,
W. R.
,
Peixoto
,
L. C.
, and
Garcia
,
A.
,
2010
, “
Mechanical Properties of Sn–Zn Lead-Free Solder Alloys Based on the Microstructure Array
,”
Mater. Charact.
,
61
, pp.
212
220
.10.1016/j.matchar.2009.11.012
7.
Kim
,
K. S.
,
Yang
,
J. M.
, and
Yu
,
C. H.
,
2003
, “
Microstructures and Shear Strength of Sn-Zn Lead-Free Solder Joints
,”
J. Korean Weld. Soc.
,
21
, pp.
765
770
.
8.
Huang
,
M. L.
, and
Wang
,
L.
,
2005
, “
Effects of Cu, Bi, and In on Microstructure and Tensile Properties of Sn-Ag-X(Cu, Bi, In) Solders
,”
Metall. Mater. Trans. A
,
36
, pp.
1439
1446
.10.1007/s11661-005-0236-7
9.
Kang
,
S. K.
,
Choi
,
W. K.
,
Shih
,
D. Y.
,
Henderson
,
D. W.
,
Gosselin
,
T.
,
Sarkhel
,
A.
,
Goldsmith
,
C.
, and
Puttlitz
,
K. J.
,
2003
, “
Study of Ag3Sn Plate Formation in the Solidification of Near Ternary Eutectic Sn-Ag-Cu Alloys
,”
JOM
,
55
, pp.
61
65
.10.1007/s11837-003-0143-6
10.
Kim
,
K. S.
,
Huh
,
S. H.
, and
Suganuma
,
K.
,
2003
, “
Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn–Ag–Cu Alloy and Joints With Cu
,”
Microelectron. Reliab.
,
43
, pp.
259
267
.10.1016/S0026-2714(02)00239-1
11.
Fawzy
,
A.
,
2007
, “
Effect of Zn Addition, Strain Rate and Deformation Temperature on the Tensile Properties of Sn–3.3 wt.% Ag Solder Alloy
,”
Mater. Charact.
,
58
, pp.
323
331
.10.1016/j.matchar.2006.05.013
12.
Bradley
,
E.
,
Handwerker
,
C.
, and
Sohn
,
J. E.
,
2003
, “
NEMI Report: A Single Lead-Free Alloy is Recommended
,” SMT, pp.
24
25
.
13.
Hong
,
W. S.
,
Kim
,
W. S.
,
Park
,
N. C.
, and
Kim
,
K. B.
,
2007
, “
Activation Energy for Intermetallic Compound Formation of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu Solder Joints
,”
J. Korean Weld. Joining Soc.
,
25
, pp.
184
190
.
14.
Amagai
,
M.
,
Toyoda
,
Y.
, and
Tajima
,
T.
,
2003
, “
High Solder Joint Reliability With Lead Free Solders
,”
Proceedings of IEEE 53rd Electronic Component Technology Conference
, New Orleans, May 27–30, pp.
317
322
.10.1109/ECTC.2003.1216296
15.
Lee
,
J. E.
,
Kim
,
K. S.
, and
Huh
,
S. H.
,
2011
, “
Development of Sn-Zn Based Low Temperature Lead-Free Solder for Improvement of Oxidation Resistance
,”
J. Korean Weld. Joining Soc.
29
, pp.
514
521
.
16.
Kim
,
K. S.
,
Imanishi
,
T.
,
Suganuma
,
K.
,
Ueshima
,
M.
, and
Kato
,
R.
,
2007
, “
Properties of Low Temperature Sn-Ag-Bi-In Solder Systems
,”
Microelectron. Reliab.
,
47
, pp.
1113
1119
.10.1016/j.microrel.2006.06.012
17.
Song
,
J. M.
,
Wu
,
Z. M.
, and
Huang
,
D. A.
,
2007
, “
Two Stage Nonequilibrium Eutectic Transformation in a Sn-3.5Ag-3In Solder
,”
Scr. Mater.
,
56
, pp.
413
416
.10.1016/j.scriptamat.2006.10.044
18.
Yeh
,
M. S.
,
2003
, “
Effects of Indium on the Mechanical Properties of Ternary Sn-In-Ag Solders
,”
Metall. Mater. Trans. A
,
34
, pp.
361
365
.10.1007/s11661-003-0337-0
19.
Abd El-Salam
,
F.
,
Abd El-Khalek
,
A. M.
,
Nada
,
R. H.
, and
Fawzy
,
A.
,
2008
, “
Effect of Silver Addition on the Creep Parameters of Sn–7 wt.% Bi Alloy During Transformation
,”
Mater. Charact.
,
59
, pp.
9
17
.10.1016/j.matchar.2006.10.006
20.
Kattner
,
U. R.
, and
Boettinger
,
W. J.
,
1994
, “
On the Sn-Bi-Ag Ternary Phase Diagram
,”
J. Electron. Mater.
,
23
(
7
), pp.
603
610
.10.1007/BF02653345
21.
Metallurgy Division, National Institute of Standards and Technology (NIST) of U.S. Commerce Department.
22.
Amagai
,
M.
,
Toyoda
,
Y.
,
Ohnishi
,
T.
, and
Akita
,
S.
,
2004
, “
High Drop Test Reliability: Lead-Free Solders
,”
Proceedings of IEEE 54th Electronic Component Technology Conference
, Las Vegas, June 1–4, pp.
1304
1309
.
23.
McComack
,
M.
, and
Jin
,
S. H.
,
1993
, “
Progress in the Design of New Lead-Free Solder Alloys
,”
JOM
,
45
, pp.
36
40
.10.1007/BF03222379
24.
Takemoto
,
T.
,
2000
, “
The Recent Situation of Lead-Containing Solder Regulation and Replacement to Environmentally Compatible Lead-Free Solder
,”
J. Weld. Soc.
,
69
, pp.
100
107
.10.2207/qjjws1943.69.100
25.
Glazer
,
J.
,
1994
, “
Microstructure and Mechanical Properties of Lead Free Alloys for Low Cost Electronic Assembly—A Review
,”
J. Electron. Mater.
,
23
, pp.
693
700
.10.1007/BF02651361
26.
Howard
,
S. M.
,
2006
, “
Ellingham Diagrams: Standard Gibbs Energies of Formation for Oxides
,” SD School of Mines and Technology, Rapid City, SD.
You do not currently have access to this content.