Thermally conductive composites as compared to metals have reduced density, decreased oxidation, and improved chemical resistance, as well as adjustable properties to fit a given application. However, there are several challenges that need to be addressed before they can be successfully implemented in heat sink design. The interface between the device and heat sink is an important factor in the thermal design of microelectronics cooling. Depending on the thermal interface conditions and material properties, the contact pressure and thermal stress level can attain undesirable values. In this paper, we investigate the effect of thermal interface between the fin and base plate on thermal-structural behavior of heat sinks. A coupled-field (thermal-structural) analysis using finite element method is performed to predict temperature as well as stress fields in the interface region. In addition temperature and heat flow rate predictions are supported through analytical results. effect of various interface geometrical (such as slot-depth, axial-gap, and radial-gap) and contact properties (such as air gap with surface roughness and gaps filled with interface material) on the resulting thermal-structural response is investigated with respect to four interface materials combinations, and it is found that the thermal performance is most sensitive to the slot-depth compared to any other parameter.

References

1.
Bahadur
,
R.
, and
Bar-Cohen
,
A.
,
2005
, “
Thermal Design and Optimization of Polymer Based Pin Fin Natural Convection Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
238
246
.10.1109/TCAPT.2005.848498
2.
Zweben
,
C.
,
2004
, “
Emerging High-Volume Applications for Advanced Thermally Conductive Materials
,”
Proceedings of 49th International Symposium and Exhibition SAMPE 2004
,
Long Beach, CA
, May 16–20, pp.
1
12
.
3.
Zweben
,
C.
,
2001
, “
Advanced Composites and Other Advanced Materials for Electronic Packaging Thermal Management
,”
IEEE Proceedings of International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces
,
Braselton, GA
, Mar. 11–14, pp.
360
365
.
4.
Leong
,
K. C.
,
Li
,
H. Y.
,
Jin
,
L. W.
, and
Chai
,
J. C.
,
2011
, “
Convective Heat Transfer in Graphite Foam Heat Sinks With Baffle and Stagger Structures
,”
ASME Trans. J. Heat Transfer
,
133
(
6
), p.
060902
.10.1115/1.4003449
5.
Shives
,
G.
,
Norley
,
J.
,
Smale
,
M.
,
Chen
,
G.
, and
Capp
,
J.
,
2004
, “
Comparative Thermal Performance Evaluation of Graphite/Epoxy Fin Heat Sinks
,”
Proceedings of IEEE-CPMT Intersociety Conference on Thermal Phenomena (ITherm)
,
Las Vegas, NV
, June 1–4, pp.
410
417
.
6.
Weber
,
E.
,
1999
, “
Development and Modeling of Thermally Conductive Polymer/Carbon Composites
,” Ph.D. thesis, Chemical Engineering Department, Michigan Technological University, Houghton, MI.
7.
Gardner
,
K. A.
,
1945
, “
Efficiency of Extended Surfaces
,”
Trans. ASME J. Heat Trans.
,
67
, pp.
621
631
.
8.
Kern
,
D. A.
, and
Kraus
,
A. D.
,
1972
,
Extended Surface Heat Transfer
,
McGraw-Hill
,
NY
, pp.
114
115
.
9.
Harper
,
D. R.
, and
Brown
,
W. B.
,
1922
, “
Mathematical Equations for Heat Conduction in the Fins in Air Cooled Engines
,” NACA Technical Report No. 158.
10.
Kraus
,
A. D.
,
Aziz
,
A.
, and
Welty
,
J.
,
2001
,
Extended Surface Heat Transfer
,
Wiley
,
New York
, pp.
1
58
.
11.
Ozisik
,
M. N.
,
1993
,
Heat Conduction
, 2nd ed.,
Wiley
,
New York
, pp.
128
131
.
12.
Gebhart
,
B.
,
1993
,
Heat Conduction and Mass Diffusion
,
McGraw-Hill
,
New York
, pp.
459
473
.
13.
Poulikakos
,
D.
,
1994
,
Conduction Heat Transfer
,
Prentice Hall
,
Englewood Cliffs, NJ
, pp.
40
54
.
14.
Mikhailov
,
M. D.
, and
Ozisik
,
M. N.
,
1984
,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
John Wiley
,
New York
, pp.
116
119
.
15.
Bahadur
,
R.
, and
Bar-Cohen
,
A.
,
2007
, “
Orthotropic Thermal Conductivity Effect on Cylindrical Pin Fin Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1155
1162
.10.1016/j.ijheatmasstransfer.2006.04.025
16.
Bahadur
,
R.
,
2005
, “
Characterization, Modeling and Optimization of Polymer Composite Pin Fins
,” Ph.D. thesis, University of Maryland, College Park, MD.
17.
Zubair
,
S. M.
,
Arif
,
A. F. M.
, and
Sharqawy
,
M. H.
,
2010
, “
A Closed-Form Solution for Temperature Distribution, Heat Transfer, Efficiency, and Effectiveness of a Cylindrical Orthotropic Pin Fin
,”
ASME Trans. J. Heat Transfer
,
132
(
3
), p.
031301
.10.1115/1.4000059
18.
Yovanovich
,
M.
,
2005
, “
Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
,
28
, pp.
128
206
.10.1109/TCAPT.2005.848483
19.
Gwinn
,
J. P.
, and
Webb
,
R. L.
,
2003
, “
Performance and Testing of Thermal Interface Materials
,”
Microelectronics J.
,
34
, pp.
215
222
.10.1016/S0026-2692(02)00191-X
20.
Grujicic
,
M.
,
Zhao
,
C. L.
, and
Dusel
,
E. C.
,
2005
, “
The Effect of Thermal Contact Resistance on Heat Management in the Electronic Packaging
,”
Appl. Surf. Sci.
,
246
, pp.
290
302
.10.1016/j.apsusc.2004.11.030
21.
Arif
,
A. F. M.
, and
Yilbas
,
B. S.
,
2008
, “
Thermal Stress Developed During Laser Cutting Process: Consideration of Different Materials
,”
Int. J. Adv. Manuf. Technol.
,
37
(
7–8
), pp.
698
704
.10.1007/s00170-007-1020-1
22.
ANSYS Users Manuals for Release 11.0
,
2007
, ANSYS Inc., Canonsburg, PA.
23.
CC3-450: Aluminum Filled Heat Sink Bonding Resin (CC3-450)
, Cast-Coat Inc.,
2012
, http://www.cast-coat.com/cc3-450.html
24.
Material Properties GY70/934 Carbon Epoxy
,
2012
, http://composite.about.com/library/data/blc-gy70-934.htm
You do not currently have access to this content.