We report the first use of a bimetallic buckling disk as a thermal conduction switch. The disk is used to passively alter the thermal resistance of the package of a chip scale atomic clock. A vertical-cavity surface-emitting laser and a cesium vapor cell, contained in the clock, must be maintained at 70±0.1°C even under an ambient temperature variation of 40°Cto50°C. A thermal test vehicle has been developed to characterize a sample package with a thermal conduction switch. Three cases are presented for the temperature control of the test vehicle under different load placements and environmental conditions: (1) a heating load with a good conduction path to the switch in a vacuum package; (2) the same loading as in Case 1, but packaged in air; and (3) a heating load insulated from the switch, in a vacuum package. At 38°C, the switch snaps upward to reduce the package’s thermal resistance. As a result, the heating power needed to maintain a constant temperature, 63.9±0.1°C, is increased from 118to200mW for Case 1. Such a significant change of the thermal resistance demonstrates the effectiveness of the thermal switch. However, the switch becomes less effective with air filling the gap, as in Case 2, and the switch is not effective at all if the heating load does not have a good conduction path to the switch as in Case 3. The steady state response of this novel thermal conduction switch has been well characterized through experimentation and finite element analysis.

1.
Knappe
,
S.
,
Shah
,
V.
,
Schwindt
,
P. D. D.
,
Hollberg
,
L.
,
Kitching
,
J.
,
Liew
,
L. A.
, and
Moreland
,
J.
, 2004, “
A Microfabricated Atomic Clock
,”
Appl. Phys. Lett.
0003-6951,
85
(
9
), pp.
1460
1462
.
2.
Tummala
,
R. R.
, 2001,
Fundamentals of Microsystems Packaging
,
McGraw-Hill
,
New York
, Chap. 6.
3.
Xie
,
H.
,
Tan
,
Q.
, and
Lee
,
Y. C.
, 2001,
Thermal and Mechanical Issues in Electronic Packaging
,
Encyclopedia of Materials: Science and Technology
,
K. H. J.
Buschow
,
R. W.
Cahn
,
M. C.
Flemings
,
B.
Ilschner
,
E. J.
Kramer
, and
S.
Mahajan
, eds.,
Elsevier Science Ltd.
,
New York
, Chap. 3, pp.
2715
2725
.
4.
Lee
,
Y. C.
,
Swirhun
,
S. E.
,
Fu
,
W. S.
,
Keyser
,
T. A.
,
Jewell
,
J. L.
, and
Quinn
,
W. E.
, 1996, “
Thermal Management of VCSEL-Based Optoelectronic Modules
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
1070-9894,
19
(
3
), pp.
540
547
.
5.
Young
,
D. B.
,
Scott
,
J. W.
,
Peters
,
F. H.
,
Peters
,
M. G.
,
Majewski
,
M. L.
,
Thibeault
,
B. J.
,
Corzine
,
S. W.
, and
Coldren
,
L. A.
, 1993, “
Enhanced Performance of Offset-Gain High-Barrier Vertical-Cavity Surface-Emitting Lasers
,”
IEEE J. Quantum Electron.
0018-9197,
29
(
6
), pp.
2013
2022
.
6.
Rahajandraibe
,
W.
,
Auvergne
,
D.
,
Dufaza
,
C.
,
Cialdella
,
B.
,
Majoux
,
B.
, and
Chowdhury
,
V.
, 2002, “
Very Low Power High Temperature Stability Bandgap Reference Voltage
,”
Proceedings of the 28th European Solid-State Circuits Conference
, Sep. 24–26, pp.
727
730
.
7.
Yoon
,
D. S.
,
Lee
,
Y. S.
,
Lee
,
Y.
,
Cho
,
H. J.
,
Sung
,
S. W.
,
Oh
,
K. W.
,
Cha
,
J.
, and
Lim
,
G.
, 2002, “
Precise Temperature Control and Rapid Thermal Cycling in a Micromachined DNA Polymerase Chain Reaction Chip
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
813
823
.
8.
Wilson
,
D. M.
,
Hoyt
,
S.
,
Janata
,
J.
,
Booksh
,
K.
, and
Obando
,
L.
, 2001, “
Chemical Sensors for Portable, Handheld Field Instruments
,”
IEEE Sens. J.
1530-437X,
1
(
4
), pp.
256
274
.
9.
Chang
,
Y. J.
,
Lee
,
S.
,
Brannon
,
A.
,
Laws
,
A. D.
,
Breitbarth
,
J.
,
Popovic
,
Z.
,
Bright
,
V. M.
, and
Lee
,
Y. C.
, 2004, “
MEMS and Packaging for Chip-Scale Atomic Clocks
,”
37th International Symposium on Microelectronics
,
Long Beach, CA
, Nov.
14
18
.
10.
Brannon
,
A.
,
Breitbarth
,
J.
, and
Popovic
,
Z.
, 2005, “
A Low Noise Local Oscillator for Chip-Scale Atomic Clocks
,”
Proceedings of IEEE MTT-S 2005 International Microwave Symposium
,
Long Beach, CA
, Jun.
12
17
.
11.
Solbrekken
,
G. L.
,
Yazawa
,
K.
, and
Bar-Cohn
,
A.
, 2004, “
Thermal Management of Portable Electronic Equipment Using Thermoelectric Energy Conversion
,”
The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Jun. 1–4, Vol.
1
, pp.
276
283
.
12.
Mescher
,
M. J.
,
Lutwak
,
R.
, and
Varghese
,
M.
, 2005, “
An Ultra-Low-Power Physics Package for a Chip-Scale Atomic Clock
,”
Digest of Technical Papers—International Conference on Solid State Sensors and Actuators and Microsystems
, Jun. 5–9, Vol.
1
, pp.
311
316
.
13.
Laws
,
A. D.
,
Chang
,
Y. J.
,
Bright
,
V. M.
, and
Lee
,
Y. C.
, 2005, “
Thermal Management for Chip Scale Atomic Clocks
,”
Proceedings of ASME-interPACK ‘05
,
San Francisco, CA
, Jul. 17–22.
14.
Cho
,
J. H.
,
Richards
,
C. D.
,
Bahr
,
D. F.
, and
Richards
,
R. F.
, 2006, “
Dynamic Operation of a MEMS Thermal Switch
,”
Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition
,
Chicago, IL
, Nov. 5–10.
15.
Kim
,
H. S.
,
Liao
,
H. H.
,
Lee
,
B. H.
, and
Kenny
,
T. D.
, 2006, “
Design and Fabrication of a Low-Powered Pre-Programmable In-Package Temperature Controller
,”
Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition
,
Chicago, IL
, Nov. 5–10.
16.
Kitching
,
J.
,
Knappe
,
S.
,
Schwindt
,
P. D. D.
,
Shah
,
V.
,
Hollberg
,
L.
,
Liew
,
L. A.
, and
Moreland
,
J.
, 2004, “
Power Dissipation in a Vertically Integrated Chip-Scale Atomic Clock
,”
Proceedings of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Conference
, pp.
781
784
.
17.
Airpax Series 5003 Thermostat
,” Copyright 2000 Airpax Corporation, Cambridge, MD.
18.
Wittrick
,
W. H.
,
Wittrick
,
W. H.
,
Myers
,
D. M.
, and
Blunden
,
W. R.
, 1953, “
Stability of a Bimetallic Disk
,”
Q. J. Mech. Appl. Math.
0033-5614,
6
(
1
), pp.
15
31
.
You do not currently have access to this content.