Abstract

Power converters and semiconductor devices are spreading their application fields, due to new renewable energy and automotive frameworks. In the electrified vehicles context, the even more stringent requirements, both in terms of performances and reliability, pose new challenges in the design phase of power switches. This paper analyzes, by means of finite-element simulations, a low-voltage power semiconductor system-in-package devoted to automotive applications, which integrates a MOSFET-based half bridge and a controller. Three simulation physical domains integrated in a unique flow are considered: thermo-mechanical, electromagnetic, and thermal numerical models. The aim is to develop a new comprehensive methodology which starts with a thermo-structural simulation of the package, then computes the on-state resistance and parasitic components to assess the electrical behavior of the package. Finally, a simulation check is made to verify if the power device performances are thermally consistent with applicative conditions.

References

1.
Morya
,
A. K.
,
Gardner
,
M. C.
,
Anvari
,
B.
,
Liu
,
L.
,
Yepes
,
A. G.
,
Doval-Gandoy
,
J.
, and
Toliyat
,
H. A.
,
2019
, “
Wide Bandgap Devices in AC Electric Drives: Opportunities and Challenges
,”
IEEE Trans. Transp. Electrific.
,
5
(
1
), pp.
3
20
.10.1109/TTE.2019.2892807
2.
Rzepka
,
S.
,
Otto
,
A.
,
Vogel
,
D.
, and
Dudek
,
R.
,
2018
, “
Application-Driven Reliability Research of Next Generation for Automotive Electronics: Challenges and Approaches
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
010903
.10.1115/1.4039333
3.
Consoli
,
A.
,
Gennaro
,
F.
,
Testa
,
A.
,
Consentino
,
G.
,
Frisina
,
F.
,
Letor
,
R.
, and
Magri
,
A.
,
2000
, “
Thermal Instability of Low Voltage Power-MOSFETs
,”
IEEE Trans. Power Electron.
,
15
(
3
), pp.
575
581
.10.1109/63.844518
4.
Castellazzi
,
A.
, and
Ciappa
,
M.
,
2007
, “
Electrothermal Characterization for Reliability of Modern Low-Voltage PowerMOSFETs
,”
IEEE Trans. Device Mater. Relib.
,
7
(
4
), pp.
571
580
.10.1109/TDMR.2007.910439
5.
Buttay
,
C.
,
Morel
,
H.
,
Allard
,
B.
,
Lefranc
,
P.
, and
Brevet
,
O.
,
2006
, “
Model Requirements for Simulation of Low-Voltage MOSFET in Automotive Applications
,”
IEEE Trans. Power Electron.
,
21
(
3
), pp.
613
624
.10.1109/TPEL.2006.872383
6.
Millan
,
J.
,
Godignon
,
P.
,
Perpina
,
X.
,
Perez-Tomas
,
A.
, and
Rebollo
,
J.
,
2014
, “
A Survey of Wide Bandgap Power Semiconductor Devices
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2155
2163
.10.1109/TPEL.2013.2268900
7.
Roig
,
J.
, and
Bauwens
,
F.
,
2018
, “
Overcoming Switching Limits in Silicon Power MOSFETs With Silicon‐Based Solutions
,”
IET Power Electron.
,
11
(
4
), pp.
629
637
.10.1049/iet-pel.2017.0392
8.
Yang
,
B.
,
Wang
,
J.
,
Xu
,
S.
,
Korec
,
J.
, and
Shen
,
Z. J.
,
2013
, “
Advanced Low-Voltage Power MOSFET Technology for Power Supply in Package Applications
,”
IEEE Trans. Power Electron.
,
28
(
9
), pp.
4202
4215
.10.1109/TPEL.2012.2230407
9.
Armando
,
E.
,
Fusillo
,
F.
,
Musumeci
,
S.
, and
Scrimizzi
,
F.
,
2019
, “
Low Voltage Trench-Gate MOSFETs for High Efficiency Auxiliary Power Supply Applications
,” 2019 International Conference on Clean Electrical Power (
ICCEP
),
Otranto, Italy
, July 2–4, pp. 165–170.10.1109/ICCEP.2019.8890217
10.
Armando
,
E.
,
Musumeci
,
S.
,
Fusillo
,
F.
, and
Scrimizzi
,
F.
,
2019
, “
Low Voltage Trench-Gate MOSFET Power Losses Optimization in Synchronous Buck Converter Applications
,” 2019 21st European Conference on Power Electronics and Applications (
EPE'19 ECCE Europe
),
Genova, Italy
, Sept. 3–5, pp.
P.1
P.10
.10.23919/EPE.2019.8914807
11.
Williams
,
R. K.
,
Darwish
,
M. N.
,
Blanchard
,
R. A.
,
Siemieniec
,
R.
,
Rutter
,
P.
, and
Kawaguchi
,
Y.
,
2017
, “
The Trench Power MOSFET: Part I—History, Technology, and Prospects
,”
IEEE Trans. Electron Devices
,
64
(
3
), pp.
674
691
.10.1109/TED.2017.2653239
12.
Williams
,
R. K.
,
Darwish
,
M. N.
,
Blanchard
,
R. A.
,
Siemieniec
,
R.
,
Rutter
,
P.
, and
Kawaguchi
,
Y.
,
2017
, “
The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, and Reliability
,”
IEEE Trans. Electron Devices
,
64
(
3
), pp.
692
712
.10.1109/TED.2017.2655149
13.
Jorgensen
,
A. B.
,
Munk-Nielsen
,
S.
, and
Uhrenfeldt
,
C.
,
2020
, “
Overview of Digital Design and Finite-Element Analysis in Modern Power Electronic Packaging
,”
IEEE Trans. Power Electron.
,
35
(
10
), pp.
10892
10905
.10.1109/TPEL.2020.2978584
14.
Ceccarelli
,
L.
,
Kotecha
,
R. M.
,
Bahman
,
A. S.
,
Iannuzzo
,
F.
, and
Mantooth
,
H. A.
,
2019
, “
Mission-Profile-Based Lifetime Prediction for a SiC Mosfet Power Module Using a Multi-Step Condition-Mapping Simulation Strategy
,”
IEEE Trans. Power Electron.
,
34
(
10
), pp.
9698
9708
.10.1109/TPEL.2019.2893636
15.
Russo
,
S.
,
Testa
,
A.
,
De Caro
,
S.
,
Scimone
,
T.
,
Panarello
,
S.
,
Patane
,
S.
,
Scelba
,
G.
, and
Scarcella
,
G.
,
2016
, “
Reliability Assessment of Power MOSFETs Working in Avalanche Mode Based on a Thermal Strain Direct Measurement Approach
,”
IEEE Trans. Ind. Appl.
,
52
(
2
), pp.
1688
1697
.10.1109/TIA.2015.2500890
16.
Testa
,
A.
,
De Caro
,
S.
, and
Russo
,
S.
,
2012
, “
A Reliability Model for Power MOSFETs Working in Avalanche Mode Based on an Experimental Temperature Distribution Analysis
,”
IEEE Trans. Power Electron.
,
27
(
6
), pp.
3093
3100
.10.1109/TPEL.2011.2177279
17.
Durand
,
C.
,
Klingler
,
M.
,
Coutellier
,
D.
, and
Naceur
,
H.
,
2016
, “
Power Cycling Reliability of Power Module: A Survey
,”
IEEE Trans. Device Mater. Relib.
,
16
(
1
), pp.
80
97
.10.1109/TDMR.2016.2516044
18.
Magnone
,
P.
,
Barletta
,
G.
, and
Magrì
,
A.
,
2018
, “
Investigation of Degradation Mechanisms in Low-Voltage p-Channel Power MOSFETs Under High Temperature Gate Bias Stress
,”
Microelectron. Reliab.
,
88–90
, pp.
438
442
.10.1016/j.microrel.2018.06.029
19.
Iannuzzo
,
F.
,
Abbate
,
C.
, and
Busatto
,
G.
,
2014
, “
Instabilities in Silicon Power Devices: A Review of Failure Mechanisms in Modern Power Devices
,”
EEE Ind. Electron. Mag.
,
8
(
3
), pp.
28
39
.10.1109/MIE.2014.2305758
20.
Ciappa
,
M.
,
2002
, “
Selected Failure Mechanisms of Modern Power Modules
,”
Microelectron. Reliab.
,
42
(
4–5
), pp.
653
667
.10.1016/S0026-2714(02)00042-2
21.
Susinni
,
G.
,
Rizzo
,
S. A.
, and
Iannuzzo
,
F.
,
2021
, “
Two Decades of Condition Monitoring Methods for Power Devices
,”
Electronics
,
10
(
6
), p.
683
.10.3390/electronics10060683
22.
Rizzo
,
S. A.
,
Susinni
,
G.
, and
Iannuzzo
,
F.
,
2022
, “
Intrusiveness of Power Device Condition Monitoring Methods: Introducing Figures of Merit for Condition Monitoring
,”
EEE Ind. Electron. Mag.
,
16
(
1
), pp.
60
69
.10.1109/MIE.2021.3066959
23.
Huang
,
Y.
,
Deng
,
H.
,
Luo
,
Y.
,
Xiao
,
F.
,
Liu
,
B.
, and
Tang
,
X.
,
2021
, “
Fatigue Mechanism of Die-Attach Joints in IGBTs Under Low-Amplitude Temperature Swings Based on 3D Electro-Thermal-Mechanical FE Simulations
,”
IEEE Trans. Ind. Electron.
,
68
(
4
), pp.
3033
3043
.10.1109/TIE.2020.2977563
24.
Yang
,
Y.
,
Dorn-Gomba
,
L.
,
Rodriguez
,
R.
,
Mak
,
C.
, and
Emadi
,
A.
,
2020
, “
Automotive Power Module Packaging: Current Status and Future Trends
,”
IEEE Access
,
8
, pp.
160126
160144
.10.1109/ACCESS.2020.3019775
25.
Samavatian
,
V.
,
Iman-Eini
,
H.
,
Avenas
,
Y.
, and
Samavatian
,
M.
,
2020
, “
Effects of Creep Failure Mechanisms on Thermomechanical Reliability of Solder Joints in Power Semiconductors
,”
IEEE Trans. Power Electron.
,
35
(
9
), pp.
8956
8964
.10.1109/TPEL.2020.2973312
26.
Darveaux
,
R.
,
2002
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction
,”
ASME J. Electron. Packaging
,
124
(
3
), pp.
147
154
.10.1115/1.1413764
27.
Calabretta
,
M.
,
Sitta
,
A.
,
Oliveri
,
S. M.
, and
Sequenzia
,
G.
,
2021
, “
Power Semiconductor Devices and Packages: Solder Mechanical Characterization and Lifetime Prediction
,”
IEEE Access
,
9
, pp.
22859
22867
.10.1109/ACCESS.2021.3056281
28.
Shen
,
Y.
,
Wang
,
H.
,
Blaabjerg
,
F.
,
Zhao
,
H.
, and
Long
,
T.
,
2020
, “
Thermal Modeling and Design Optimization of PCB Vias and Pads
,”
IEEE Trans. Power Electron.
,
35
(
1
), pp.
882
900
.10.1109/TPEL.2019.2915029
29.
Lwin
,
K. K.
,
Tubillo
,
C. E.
,
Dimaano Panumard
,
T. J.
,
Suthiwongsunthorn
,
N.
, and
Sirinorakul
,
S.
,
2016
, “
Copper Clip Package for High Performance MOSFETs and Its Optimization
,” 2016 IEEE 18th Electronics Packaging Technology Conference (
EPTC
),
Singapore,
Nov. 30–Dec. 3, pp.
123
128
.10.1109/EPTC.2016.7861457
30.
Wang
,
K.
,
2017
, “
Review of State-of-the-Art Integration Technologies in Power Electronic Systems
,”
CPSS TPEA
,
2
(
4
), pp.
292
305
.10.24295/CPSSTPEA.2017.00027
31.
Hou
,
F.
,
Wang
,
W.
,
Cao
,
L.
,
Li
,
J.
,
Su
,
M.
,
Lin
,
T.
,
Zhang
,
G.
, and
Ferreira
,
B.
,
2020
, “
Review of Packaging Schemes for Power Module
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
8
(
1
), pp.
223
238
.10.1109/JESTPE.2019.2947645
32.
White
,
R. V.
,
2020
, “
Packaging and Integration and the Future of Power Electronics [White Hot]
,”
IEEE Power Electron. Mag.
,
7
(
3
), pp.
87
92
.10.1109/MPEL.2020.3011306
33.
Zhang
,
B.
, and
Wang
,
S.
,
2020
, “
A Survey of EMI Research in Power Electronics Systems With Wide-Bandgap Semiconductor Devices
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
8
(
1
), pp.
626
643
.10.1109/JESTPE.2019.2953730
34.
Miyazaki
,
N.
,
Shishido
,
N.
, and
Hayama
,
Y.
,
2021
, “
Review of Methodologies for Structural Integrity Evaluation of Power Modules
,”
ASME. J. Electron. Packag.
,
143
(
2
), p.
020801
.10.1115/1.4048038
35.
Qin
,
F.
,
Bie
,
X.
,
An
,
T.
,
Dai
,
J.
,
Dai
,
Y.
, and
Chen
,
P.
,
2021
, “
A Lifetime Prediction Method for IGBT Modules Considering the Self-Accelerating Effect of Bond Wire Damage
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
9
(
2
), pp.
2271
2284
.10.1109/JESTPE.2020.2992311
36.
Hanif
,
A.
,
Yu
,
Y.
,
DeVoto
,
D.
, and
Khan
,
F.
,
2019
, “
A Comprehensive Review Toward the State-of-the-Art in Failure and Lifetime Predictions of Power Electronic Devices
,”
IEEE Trans. Power Electron.
,
34
(
5
), pp.
4729
4746
.10.1109/TPEL.2018.2860587
37.
Gopi Reddy
,
L.
,
Tolbert
,
L.
, and
Ozpineci
,
B.
,
2015
, “
Power Cycle Testing of Power Switches: A Literature Survey
,”
IEEE Trans. Power Electron.
, 30(5), pp. 2465–2473.10.1109/TPEL.2014.2359015
38.
Motalab
,
M.
, et al.,
2013
, “
Correlation of Reliability Models Including Aging Effects With Thermal Cycling Reliability Data
,”
2013 IEEE 63rd Electronic Components and Technology Conference
, Las Vegas, NV, May 28–31, pp.
986
1004
.10.1109/ECTC.2013.6575694
39.
Wilde
,
J.
,
Becker
,
K.
,
Thoben
,
M.
,
Blum
,
W.
,
Jupitz
,
T.
,
Wang
,
G.
, and
Cheng
,
Z. N.
,
2000
, “
Rate Dependent Constitutive Relations Based on Anand Model for 92.5Pb5Sn2.5Ag Solder
,”
IEEE Trans. Adv. Packag.
,
23
(
3
), pp.
408
414
.10.1109/6040.861554
40.
Sitta
,
A.
,
Mauromicale
,
G.
,
Sequenzia
,
G.
,
Messina
,
A. A.
,
Renna
,
M.
, and
Calabretta
,
M.
,
2021
, “
Thermo-Mechanical Finite Element Simulation and Visco-Plastic Solder Fatigue for Low Voltage Discrete Package
,” 2021 22nd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
),
St. Julian, Malta, Apr. 19–21, pp.
1
6
.10.1109/EuroSimE52062.2021.9410870
41.
Motalab
,
M.
,
Cai
,
Z.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2012
, “
Determination of Anand Constants for SAC Solders Using Stress-Strain or Creep Data
,”
13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
San Diego, CA
, May 30–June 1, pp.
910
922
.10.1109/ITHERM.2012.6231522
42.
Sitta
,
A.
,
Russo
,
S.
,
Torrisi
,
M.
,
Messina
,
A. A.
,
D'Arrigo
,
G.
,
Sequenzia
,
G.
,
Renna
,
M.
, and
Calabretta
,
M.
,
2020
, “
An Integrated Approach to Optimize Solder Joint Reliability
,” 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
),
Cracow, Poland, July 5–8, pp.
1
5
.10.1109/EuroSimE48426.2020.9152688
43.
COMSOL, 2022, “
AC/DC Module User's Guide
,” COMSOL, accessed Dec. 13, 2022, https://doc.comsol.com/5.6/doc/com.comsol.help.acdc/ACDCModuleUsersGuide.pdf
44.
Ansys
,
2021
, Ansys Q3D Extractor Help, Ansys.
45.
Mauromicale
,
G.
,
Sitta
,
A.
,
Calabretta
,
M.
,
Oliveri
,
S. M.
, and
Sequenzia
,
G.
,
2021
, “
Integrated Electromagnetic-Thermal Approach to Simulate a GaN-Based Monolithic Half-Bridge for Automotive DC-DC Converter
,”
Appl. Sci.
,
11
(
18
), p.
8302
.10.3390/app11188302
46.
Moreno
,
G.
,
Narumanchi
,
S.
,
Feng
,
X.
,
Anschel
,
P.
,
Myers
,
S.
, and
Keller
,
P.
,
2022
, “
Electric-Drive Vehicle Power Electronics Thermal Management: Current Status, Challenges, and Future Directions
,”
ASME. J. Electron. Packag.
,
144
(
1
), p.
011004
.10.1115/1.4049815
47.
Nafis
,
B. M.
,
Iradukunda
,
A.-C.
, and
Huitink
,
D.
,
2020
, “
System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities Using Phase-Change Materials
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
041108
.10.1115/1.4047497
48.
Raciti
,
A.
,
Cristaldi
,
D.
,
Greco
,
G.
,
Vinci
,
G.
, and
Bazzano
,
G.
,
2015
, “
Electrothermal SPICE Modeling and Simulation of Power Modules
,”
IEEE Trans. Ind. Electron.
,
62
(
10
), pp.
6260
6271
.10.1109/TIE.2015.2420672
You do not currently have access to this content.