Abstract

Recent years, the sintered silver paste was introduced and further developed for power electronics packaging due to low processing temperature and high working temperature. The pressure-less sintering technology reduces the stress damage caused by the pressure to the chip, improves reliability, and is widely applied in manufacturing. Currently, most existed studies are focused on alcohol-based sintered silver pastes while resins have been demonstrated to improve the bonding properties of solder joints. Hence, the performance and sintering mechanisms with epoxy-based silver paste need to be further explored. In this work, a methodology for multifactor investigation is settled on the epoxy-based silver paste to reveal the relationship between the strength and the different influence factors. We first analyzed the characteristics of commercialized epoxy-based silver paste samples, including silver content, silver particle size, organic composition, sample viscosity, and thermal conductivity. Samples were then prepared for shear tests and microstructure analysis under different pressure-less sintering temperatures, holding time, substrate surface, and chip size. Full factor analysis results were further discussed in detail for correlation. The influence factors were ranked from strong to weak as follows: sintering temperature, substrate surface, chip size, and holding time. Finally, a thermal cycling test was carried out for reliability analysis. Epoxy residues are one of the possible reasons, which result in shear strength decreasing exponentially.

References

1.
Fu
,
L.
,
Xuan
,
Z.
,
Scott
,
M.
,
Yao
,
C.
, and
Wang
,
J.
,
2014
, “
The Evaluation and Application of Wide Bandgap Power Devices
,” International Transportation Electrification Asia-Pacific (
ITECAP
),
Beijing, China
, Aug. 31–Sept. 3, pp.
1
5
.10.1109/ITEC-AP.2014.6941195
2.
Jin
,
H.
,
Li
,
Q.
,
Lan
,
Z.
,
Zeng
,
X.
, and
Rui
,
Y.
,
2016
, “
Review of Wide Band-Gap Semiconductors Technology
,”
MATEC Web Conf.
,
40
(
01006
), p.
01006
.10.1051/matecconf/20164001006
3.
Rodriguez
,
M.
,
Zhang
,
Y.
, and
Maksimovic
,
D.
,
2014
, “
High-Frequency PWM Buck Converters Using GaN-on-SiC HEMTs
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2462
2473
.10.1109/TPEL.2013.2279212
4.
Gonzalez
,
J. O.
,
Wu
,
R.
,
Jahdi
,
S.
, and
Alatise
,
O.
,
2020
, “
Performance and Reliability Review of 650 V and 900 V Silicon and SiC Devices: MOSFETs, Cascode JFETs and IGBTs
,”
IEEE Trans. Ind. Electron.
,
67
(
9
), pp.
7375
7385
.10.1109/TIE.2019.2945299
5.
Perdikakis
,
W.
,
Scott
,
M. J.
,
Yost
,
K. J.
,
Kitzmiller
,
C.
,
Hall
,
B.
, and
Sheets
,
K. A.
,
2020
, “
Comparison of Si and SiC EMI and Efficiency in a Two-Level Aerospace Motor Drive Application
,”
IEEE Trans. Transport. Electrification
,
6
(
4
), pp.
1401
1411
.10.1109/TTE.2020.3010499
6.
Bayram
,
F.
,
Gajula
,
D.
,
Khan
,
D.
, and
Koley
,
G.
,
2020
, “
Investigation of AlGaN/GaN HFET and VO(2)Thin Film Based Deflection Transducers Embedded in GaN Microcantilevers
,”
Micromachines
,
11
(
9
), pp.
1
12
.10.3390/mi11090875
7.
Li
,
X.
,
Pu
,
T.
,
Li
,
L.
, and
Ao
,
J.-P.
,
2020
, “
Enhanced Sensitivity of GaN-Based Temperature Sensor by Using the Series Schottky Barrier Diode Structure
,”
IEEE Electron Device Lett.
,
41
(
4
), pp.
601
604
.10.1109/LED.2020.2971263
8.
Ghimire
,
P.
,
De Vega
,
A.
,
Beczkowski
,
S.
,
Rannestad
,
B.
,
Munk-Nielsen
,
S.
, and
Thogersen
,
P.
,
2014
, “
Improving Power Converter Reliability: Online Monitoring of High-Power IGBT Modules
,”
IEEE Ind. Electron. Mag.
,
8
(
3
), pp.
40
50
.10.1109/MIE.2014.2311829
9.
Luo
,
H.
,
Chen
,
Y.
,
Sun
,
P.
,
Li
,
W.
, and
He
,
X.
,
2016
, “
Junction Temperature Extraction Approach With Turn-Off Delay Time for High-Voltage High-Power IGBT Modules
,”
IEEE Trans. Power Electron.
,
31
(
7
), pp.
5122
5132
.10.1109/TPEL.2015.2481465
10.
Chiu
,
Y. F.
,
Tsai
,
Y. L.
, and
Hwang
,
W. S.
,
2003
, “
Mathematical Modeling for the Solidification Heat-Transfer Phenomena During the Reflow Process of Lead-Tin Alloy Solder Joint in Electronics Packaging
,”
Appl. Math. Modell.
,
27
(
7
), pp.
565
579
.10.1016/S0307-904X(03)00087-8
11.
Liang
,
M.-W.
,
Yen
,
H.-T.
, and
Hsieh
,
T.-E.
,
2006
, “
Investigation of Electroless Cobalt-Phosphorous Layer and Its Diffusion Barrier Properties of Pb-Sn Solder
,”
J. Electron. Mater.
,
35
(
7
), pp.
1593
1599
.10.1007/s11664-006-0153-6
12.
Kim
,
D.
,
Nagao
,
S.
,
Chen
,
C. T.
,
Wakasugi
,
N.
,
Yamamoto
,
Y.
,
Suetake
,
A.
,
Takemasa
,
T.
,
Sugahara
,
T.
, and
Suganuma
,
K.
,
2021
, “
Online Thermal Resistance and Reliability Characteristic Monitoring of Power Modules With Ag Sinter Joining and Pb, Pb-Free Solders During Power Cycling Test by SiC TEG Chip
,”
IEEE Trans. Power Electron.
,
36
(
5
), pp.
4977
4990
.10.1109/TPEL.2020.3031670
13.
Peng
,
J.
,
Wang
,
M.
,
Sadeghi
,
B.
,
Wang
,
R. C.
,
Liu
,
H. S.
, and
Cavaliere
,
P.
,
2021
, “
Increasing Shear Strength of Au-Sn Bonded Joint Through Nano-Grained Interfacial Reaction Products
,”
J. Mater. Sci.
,
56
(
11
), pp.
7050
7062
.10.1007/s10853-020-05623-1
14.
Yin
,
L. M.
,
Lin
,
J. X.
,
Zhang
,
T. T.
,
Yao
,
Z. X.
,
Du
,
C. H.
, and
Tang
,
M.
, 2013, “
Comparison of Mechanical Properties of Lead-Free Microscale Solder Joints Under Tensile and Shear Loading,” 14th International Conference on Electronic Packaging Technology (
ICEPT
), IEEE,
Dalian, China,
Aug. 11–14.10.1109/ICEPT.2013.6756604
15.
El-Daly
,
A. A.
,
Mohamad
,
A. Z.
,
Fawzy
,
A.
, and
El-Taher
,
A. M.
,
2011
, “
Creep Behavior of Near-Peritectic Sn-5Sb Solders Containing Small Amount of Ag and Cu
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1055
1062
.10.1016/j.msea.2010.11.001
16.
Manikam
,
V. R.
, and
Cheong
,
K. Y.
,
2011
, “
Die Attach Materials for High Temperature Applications: A Review
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
1
(
4
), pp.
457
478
.10.1109/TCPMT.2010.2100432
17.
Zhang
,
P.
,
Jiang
,
X.
,
Yuan
,
P.
,
Yan
,
H.
, and
Yang
,
D.
,
2018
, “
Silver Nanopaste: Synthesis, Reinforcements and Application
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1048
1069
.10.1016/j.ijheatmasstransfer.2018.06.083
18.
Zhang
,
S.
,
Xu
,
X.
,
Lin
,
T.
, and
He
,
P.
,
2019
, “
Recent Advances in Nano-Materials for Packaging of Electronic Devices
,”
J. Mater. Sci.-Mater. Electron.
,
30
(
15
), pp.
13855
13868
.10.1007/s10854-019-01790-3
19.
Lee
,
C. J.
,
Bang
,
J. O.
, and
Jung
,
S. B.
,
2019
, “
Effect of Black Residue on the Mechanical Properties of Sn-58Bi Epoxy Solder Joints
,”
Microelectron. Eng.
,
216
(
AUG
), p.
111055
.10.1016/j.mee.2019.111055
20.
Sharma
,
A.
,
Jung
,
D.-h.
,
Cheon
,
J. S.
, and
Jung
,
J.-P.
,
2019
, “
Epoxy Polymer Solder Pastes for Micro-Electronic Packaging Applications
,”
J. Weld. Join.
,
37
(
2
), pp.
7
14
.10.5781/JWJ.2019.37.2.2
21.
Sung
,
Y.-G.
,
Myung
,
W.-R.
,
Jeong
,
H.
,
Ko
,
M.-K.
,
Moon
,
J.
, and
Jung
,
S.-B.
,
2018
, “
Mechanical Reliability of the Epoxy Sn-58 wt.%Bi Solder Joints With Different Surface Finishes Under Thermal Shock
,”
J. Electron. Mater.
,
47
(
7
), pp.
4165
4169
.10.1007/s11664-018-6224-7
22.
Hwang
,
B.-U.
,
Jung
,
K.-H.
,
Min
,
K. D.
,
Lee
,
C.-J.
, and
Jung
,
S.-B.
,
2021
, “
Pressureless Cu-Cu Bonding Using Hybrid Cu-Epoxy Paste and Its Reliability
,”
J. Mater. Sci.-Mater. Electron.
,
32
(
3
), pp.
3054
3065
.10.1007/s10854-020-05055-2
23.
Zou
,
G.
,
Yan
,
J.
,
Mu
,
F.
,
Wu
,
A.
, and
Zhou
,
Y. N.
,
2011
, “
Recent Progress in Microjoining and Nanojoining
,”
Hanjie Xuebao/Trans. China Weld. Inst.
,
32
(
4
), pp.
107
112
.http://hjxb.hwi.com.cn/hjxb/en/article/id/20110428
24.
Scheuermann
,
U.
, and
Wiedl
,
P.
,
1997
, “
Low Temperature Joining Technology - A High Reliability Alternative to Solder Contacts
,”
Workshop on Metal Ceramic Materials for Functional Applications
, Wien, Austria, June 4–6, pp.
181
192
.https://www.researchgate.net/publication/267794221_Low_temperature_joining_technology_-_a_high_reliability_alternative_to_solder_contacts
25.
Jarosz
,
M.
,
Jakubowska
,
M.
,
Kielbasinski
,
K.
,
Mlozniak
,
A.
, and
Teodorczyk
,
M.
,
2012
, “
Low Temperature Joining Technique (LTJT) as an Alternative to Lead-Free Soldering for Die-Attach Applications
,”
Fourth Electronic System-Integration Technology Conference
,
IEEE
, Amsterdam, The Netherlands, Sept. 17–20, pp.
1
6
.10.1109/ESTC.2012.6542164
26.
Bai
,
J. G.
,
Yin
,
J.
,
Zhang
,
Z.
,
Lu
,
G. Q.
, and
Van Wyk
,
J. D.
,
2007
, “
High-Temperature Operation of SiC Power Devices by Low-Temperature Sintered Silver Die-Attachment
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
506
510
.10.1109/TADVP.2007.898628
27.
Chew
,
L. M.
,
Schmitt
,
W.
,
Schwarzer
,
C.
, and
Nachreiner
,
J.
,
2018
, “
Micro-Silver Sinter Paste Developed for Pressure Sintering on Bare Cu Surfaces Under Air or Inert Atmosphere
,”
IEEE 68th Electronic Components and Technology Conference
, San Diego, CA, May 29–June 1, pp.
323
330
.10.1109/ECTC.2018.00056
28.
Chua
,
S. T.
, and
Siow
,
K. S.
,
2016
, “
Microstructural Studies and Bonding Strength of Pressureless Sintered Nano-Silver Joints on Silver, Direct Bond Copper (DBC) and Copper Substrates Aged at 300 °C
,”
J. Alloys Compd.
,
687
, pp.
486
498
.10.1016/j.jallcom.2016.06.132
29.
Mei
,
Y.
,
Li
,
X.
,
Ning
,
P.
,
Fu
,
S.
, and
Lu
,
G.-Q.
,
2015
, “
Parametric Study on Pressureless Sintering of Nanosilver Paste to Bond Large-Area (a Parts per Thousand yen100 mm(2)) Power Chips at Low Temperatures for Electronic Packaging
,”
J. Electron. Mater.
,
44
(
10
), pp.
3973
3984
.10.1007/s11664-015-3842-1
30.
Schmitt
,
W.
,
2016
, “
Adjust the Mechanical Properties of Sintered Silver Layers Using Additives
,”
Cips International Conference on Integrated Power Electronics Systems
,
IEEE
,
Nuremberg, Germany
, Mar. 8–10, pp.
1
7
.https://ieeexplore.ieee.org/document/7736754
31.
Schmitt
,
W.
, and
Heraeus
,
W. C.
,
2010
, “
New Silver Contact Pastes From High Pressure Sintering to Low Pressure Sintering
,” Third Electronics System Integration Technology Conference (
ESTC
),
IEEE
, Berlin, Germany, Sept. 13–16, pp.
1
6
.10.1109/ESTC.2010.5642933
32.
Stuckner
,
J. A.
,
Lu
,
G. Q.
,
Mitsuhara
,
M.
,
Reynolds
,
W. T.
, and
Murayama
,
M.
,
2017
, “
The Influence of Processing Conditions on the 3-D Interconnected Structure of Nanosilver Paste
,”
IEEE Trans. Electron Devices
,
64
(
2
), pp.
494
–49
6
.10.1109/TED.2016.2639363
33.
Duch
,
S.
,
Krebs
,
T.
,
Loewer
,
Y.
,
Schmitt
,
W.
, and
Thomas
,
M.
, and
2012
, “
Novel Interconnect Materials for High Reliability Power Converters With Operation Temperatures Above 150 °C
,”
IEEE 62nd Electronic Components and Technology Conference
,
IEEE
,
San Diego, CA
, May 29–June 1, pp.
416
422
.10.1109/ECTC.2012.6248864
34.
Yang
,
Y.
,
Yin
,
L. M.
,
Xian
,
J. W.
,
Xin
,
M. A.
, and
Zhang
,
X. P.
,
2008
, “
Green Manufacturing of Electronics and Materials for Green Electronic Packaging
,”
Electron. Process Technol.
,
29
(
5
), pp.
256
260
.
35.
Manikam
,
V. R.
, and
Tolentino
,
E. N.
,
2015
, “
Sintering of Ag Paste for Power Devices Die Attach on Cu Surfaces
,” IEEE 16th Electronics Packaging Technology Conference (
EPTC
),
IEEE
,
Singapore
, Dec. 3–5.10.1109/EPTC.2014.7028252
36.
Jung
,
K.-H.
,
Min
,
K. D.
,
Lee
,
C.-J.
,
Park
,
B.-G.
,
Jeong
,
H.
,
Koo
,
J.-M.
,
Lee
,
B.
, and
Jung
,
S.-B.
,
2019
, “
Effect of Epoxy Content in Ag Nanoparticle Paste on the Bonding Strength of MLCC Packages
,”
Appl. Surf. Sci.
,
495
, p.
143487
.10.1016/j.apsusc.2019.07.229
37.
Dias
,
M.
,
Costa
,
T. A.
,
Silva
,
B. L.
,
Spinelli
,
J. E.
,
Cheung
,
N.
, and
Garcia
,
A.
,
2018
, “
A Comparative Analysis of Microstructural Features, Tensile Properties and Wettability of Hypoperitectic and Peritectic Sn-Sb Solder Alloys
,”
Microelectron. Reliab.
,
81
, pp.
150
158
.10.1016/j.microrel.2017.12.029
38.
Liu
,
Y.
,
Zhang
,
H.
,
Wang
,
L.
,
Fan
,
X.
,
Zhang
,
G.
, and
Sun
,
F.
,
2018
, “
Effect of Sintering Pressure on the Porosity and the Shear Strength of the Pressure-Assisted Silver Sintering Bonding
,”
IEEE Trans. Device Mater. Reliab.
, 18(2), pp.
240
246
.10.1109/TDMR.2018.2819431
39.
Kim
,
K. S.
,
Park
,
B. G.
,
Jung
,
K. H.
,
Kim
,
J. W.
,
Jeong
,
M. Y.
, and
Jung
,
S. B.
,
2015
, “
Microwave Sintering of Silver Nanoink for Radio Frequency Applications
,”
J. Nanosci. Nanotechnol.
,
15
(
3
), pp.
2333
2337
.10.1166/jnn.2015.10239
40.
Schmitt
,
W.
,
Chew
,
L. M.
, and
Miller
,
R.
,
2018
, “
Pressure-Less Sintering on Large Dies Using Infrared Radiation and Optimized Silver Sinter Paste
,”
IEEE 68th Electronic Components and Technology Conference
,
San Diego, CA, May 29–June 1,
pp.
539
544
.10.1109/ECTC.2018.00085
41.
Peng
,
P.
,
Hu
,
A.
, and
Zhou
,
Y.
,
2012
, “
Laser Sintering of Silver Nanoparticle Thin Films: Microstructure and Optical Properties
,”
Appl. Phys. A
,
108
(
3
), pp.
685
691
.10.1007/s00339-012-6951-1
42.
Fang
,
H.
,
Wang
,
C.
,
Zhou
,
S.
,
Kang
,
Q.
,
Wang
,
T.
,
Yang
,
D.
,
Tian
,
Y.
, and
Suga
,
T.
,
2020
, “
Rapid Pressureless and Low-Temperature Bonding of Large-Area Power Chips by Sintering Two-Step Activated Ag Paste
,”
J. Mater. Sci.-Mater. Electron.
,
31
(
8
), pp.
6497
6505
.10.1007/s10854-020-03207-y
43.
Hong
,
W. S.
,
Kim
,
M. S.
, and
Hong
,
K.-K.
,
2021
, “
Electrical and Microstructural Reliability of Pressureless Silver-Sintered Joints on Silicon Carbide Power Modules Under Thermal Cycling and High-Temperature Storage
,”
J. Electron. Mater.
,
50
(
3
), pp.
914
925
.10.1007/s11664-020-08698-3
44.
Watanabe
,
T.
,
Takesue
,
M.
,
Matsuda
,
T.
,
Sano
,
T.
, and
Hirose
,
A.
,
2020
, “
Thermal Stability and Characteristic Properties of Pressureless Sintered Ag Layers Formed With Ag Nanoparticles for Power Device Applications
,”
J. Mater. Sci.-Mater. Electron.
,
31
(
20
), pp.
17173
17182
.10.1007/s10854-020-04265-y
You do not currently have access to this content.