Abstract

The demand for wearable consumer electronics, fitness accessories, and biomedical equipment has led to the growth research and development of thin flexible batteries. Wearable equipment and other asset monitoring applications require conformal installation of power sources on nonplanar surfaces. For power sources in wearable electronics, durability to sustain repetitive mechanical stresses induced by human body motion is paramount along with the usual desirable power source characteristics. Previous research documenting the reliability of statically and dynamically folded power sources is scarce and does not follow standardized test protocols. Particularly, the use of manual stressing for mechanical folding of the power sources instead of a mechanical test setup is a key shortcoming in existing literature. Data are lacking on battery life cycling and in situ mechanical stress-testing of the power sources including their impact of performance and reliability. This study aims to overcome these deficiencies by testing a commercial Li-ion power source under static as well as dynamic folding. Furthermore, the fold orientation and its fold speed are varied to evaluate the effect of different mechanical stress topologies on the power source. Finally, a regression model was developed to capture the effect of these use parameters on battery capacity degradation.

References

1.
Luo
,
X.
,
Wang
,
J.
,
Dooner
,
M.
, and
Clarke
,
J.
,
2015
, “
Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation
,”
Appl. Energy
,
137
, pp.
511
536
.10.1016/j.apenergy.2014.09.081
2.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.10.1016/j.mattod.2014.10.040
3.
Zhou
,
G.
,
Li
,
F.
, and
Cheng
,
H.
,
2014
, “
Progress in Flexible Lithium Batteries and Future Prospects
,”
Energy Environ. Sci.
,
7
(
4
), pp.
1307
1338
.10.1039/C3EE43182G
4.
MacKenzie
,
J. D.
, and
Ho
,
C.
,
2015
, “
Perspectives on Energy Storage for Flexible Electronic Systems
,”
Proc. IEEE
,
103
(
4
), pp.
535
553
.10.1109/JPROC.2015.2406340
5.
Wang
,
Y.
,
Liu
,
B.
,
Li
,
Q.
,
Cartmell
,
S.
,
Ferrara
,
S.
,
Deng
,
Z. D.
, and
Xiao
,
J.
,
2015
, “
Lithium and Lithium Ion Batteries for Applications in Microelectronic Devices: A Review
,”
J. Power Sources
,
286
, pp.
330
345
.10.1016/j.jpowsour.2015.03.164
6.
Saxena
,
S.
,
Roman
,
D.
,
Robu
,
V.
,
Flynn
,
D.
, and
Pecht
,
M.
,
2021
, “
Battery Stress Factor Ranking for Accelerated Degradation Test Planning Using Machine Learning
,”
Energies
,
14
(
3
), p.
723
.10.3390/en14030723
7.
Waldmann
,
T.
,
Wilka
,
M.
,
Kasper
,
M.
,
Fleischhammer
,
M.
, and
Wohlfahrt-Mehrens
,
M.
,
2014
, “
Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries—A Post-Mortem Study
,”
J. Power Sources
,
262
, pp.
129
135
.10.1016/j.jpowsour.2014.03.112
8.
Bodenes
,
L.
,
Naturel
,
R.
,
Martinez
,
H.
,
Dedryvère
,
R.
,
Menetrier
,
M.
,
Croguennec
,
L.
,
Pérès
,
J.-P.
,
Tessier
,
C.
, and
Fischer
,
F.
,
2013
, “
Lithium Secondary Batteries Working at Very High Temperature: Capacity Fade and Understanding of Aging Mechanisms
,”
J. Power Sources
,
236
, pp.
265
275
.10.1016/j.jpowsour.2013.02.067
9.
Leng
,
F.
,
Tan
,
C. M.
, and
Pecht
,
M.
,
2015
, “
Effect of Temperature on the Aging Rate of Li Ion Battery Operating Above Room Temperature
,”
Sci. Rep.
,
5
(
1
), p.
12967
.10.1038/srep12967
10.
Tomaszewska
,
A.
,
Chu
,
Z.
,
Feng
,
X.
,
O'Kane
,
S.
,
Liu
,
X.
,
Chen
,
J.
,
Ji
,
C.
, et al.,
2019
, “
Lithium-Ion Battery Fast Charging: A Review
,”
eTransportation
,
1
, p.
100011
.10.1016/j.etran.2019.100011
11.
Sepulveda
,
A.
,
Speulmanns
,
J.
, and
Vereecken
,
P. M.
,
2018
, “
Bending Impact on the Performance of a Flexible Li4Ti5O12-Based All-Solid-State Thin-Film Battery
,”
Sci. Technol. Adv. Mater.
,
19
(
1
), pp.
454
464
.10.1080/14686996.2018.1468199
12.
Qu
,
H.
,
Hou
,
J.
,
Tang
,
Y.
,
Semenikhin
,
O.
, and
Skorobogatiy
,
M.
,
2017
, “
Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors With Enhanced Conductivity
,”
Can. J. Chem.
,
95
(
2
), pp.
169
173
.10.1139/cjc-2015-0593
13.
Kutbee
,
A. T.
,
Ghoneim
,
M. T.
,
Ahmad
,
S. M.
, and
Hussain
,
M. M.
,
2016
, “
Free-Form Flexible Lithium-Ion Microbattery
,”
IEEE Trans. Nanotechnol.
,
15
(
3
), pp.
402
408
.10.1109/TNANO.2016.2537338
14.
Hu
,
L.
,
Wu
,
H.
,
Mantia
,
F. L.
,
Yang
,
Y.
, and
Cui
,
Y.
,
2010
, “
Thin, Flexible, Secondary Li-Ion Paper Batteries
,”
ACS Nano
,
4
(
10
), pp.
5843
5848
.10.1021/nn1018158
15.
Li
,
N.
,
Chen
,
Z.
,
Ren
,
W.
,
Li
,
F.
, and
Cheng
,
H.
,
2012
, “
Flexible Graphene-Based Lithium Ion Batteries With Ultrafast Charge and Discharge Rates
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
43
), pp.
17360
17365
.10.1073/pnas.1210072109
16.
Li
,
L.
,
Wu
,
Z. P.
,
Sun
,
H.
,
Chen
,
D.
,
Gao
,
J.
,
Suresh
,
S.
,
Chow
,
P.
,
Singh
,
C. V.
, and
Koratkar
,
N.
,
2015
, “
A Foldable Lithium-Sulfur Battery
,”
ACS Nano
,
9
(
11
), pp.
11342
11350
.10.1021/acsnano.5b05068
17.
Lall
,
P.
, and
Zhang
,
H.
,
2017
, “
Test Protocol for Assessment of Flexible Power Sources in Foldable Wearable Electronics Under Stresses of Daily Motion During Operation
,”
Proceedings of the IEEE ECTC
,
Orlando, FL
, May 30–June 2, pp.
804
814
.10.1109/ECTC.2017.301
18.
Lall
,
P.
,
Abrol
,
A.
,
Leever
,
B.
, and
Marsh
,
J.
,
2018
, “
Effect of Shallow Cycling on Flexible Power-Source Survivability Under Bending Loads and Operating Temperatures Representative of Stresses of Daily Motion
,”
Proceedings of the IEEE ECTC
,
San Diego, CA
, May 29–June 1, pp.
2351
2358
.10.1109/ECTC.2018.00354
19.
Li
,
Y.
,
Liu
,
K.
,
Foley
,
A. M.
,
Zulke
,
A.
, and
Berecibar
,
M.
,
2019
, “
Data-Driven Health Estimation and Lifetime Prediction of Lithium-Ion Batteries: A Review
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109254
.10.1016/j.rser.2019.109254
20.
de Hoog
,
J.
,
Timmermans
,
J.-M.
,
Ioan-Stroe
,
D.
,
Swierczynski
,
M.
,
Jaguemont
,
J.
,
Goutam
,
S.
,
Omar
,
N.
,
Van Mierlo
,
J.
, and
Van Den Bossche
,
P.
,
2017
, “
Combined Cycling and Calendar Capacity Fade Modeling of a Nickel-Manganese-Cobalt Oxide Cell With Real-Life Profile Validation
,”
Appl. Energy
,
200
, pp.
47
61
.10.1016/j.apenergy.2017.05.018
21.
Stroe
,
D.
,
Swierczynski
,
M.
,
Stan
,
A.
,
Teodorescu
,
R.
, and
Andreasen
,
S. J.
,
2014
, “
Accelerated Lifetime Testing Methodology for Lifetime Estimation of Lithium-Ion Batteries Used in Augmented Wind Power Plants
,”
IEEE Trans. Ind. Appl.
,
50
(
6
), pp.
4006
4017
.10.1109/TIA.2014.2321028
22.
Sarasketa-Zabala
,
E.
,
Martinez-Laserna
,
E.
,
Berecibar
,
M.
,
Gandiaga
,
I.
,
Rodriguez-Martinez
,
L. M.
, and
Villarreal
,
I.
,
2016
, “
Realistic Lifetime Prediction Approach for Li-Ion Batteries
,”
Appl. Energy
,
162
, pp.
839
852
.10.1016/j.apenergy.2015.10.115
23.
Lall
,
P.
,
Soni
,
V.
, and
Miller
,
S.
,
2020
, “
Effect of Flex-to-Install and Dynamic Folding on Li-Ion Battery Performance Degradation Subjected to Varying Orientations, Folding Speeds, Depths of Charge and C-Rates
,”
ASME
Paper No. IPACK2020-2661.10.1115/IPACK2020-2661
24.
Kabir
,
M. M.
, and
Demirocak
,
D. E.
,
2017
, “
Degradation Mechanisms in Li‐Ion Batteries: A State‐of‐the‐Art Review
,”
Int. J. Energy Res.
,
41
(
14
), pp.
1963
1986
.10.1002/er.3762
25.
Kolzenberg
,
L.
,
Latz
,
A.
, and
Horstmann
,
B.
,
2020
, “
Solid Electrolyte Interphase During Battery Cycling: Theory of Growth Regimes
,”
ChemSusChem
,
13
(
15
), pp.
3901
3910
.10.1002/cssc.202000867
You do not currently have access to this content.