Abstract

Microchannel flow boiling has shown great cooling potential with steady-state studies demonstrating the capability to dissipate heat fluxes over 1 kW cm−2. However, most microelectronic devices undergo transient heat loads involving cold startups or pulse-like power operation. Transient heating events in low thermal resistance, low thermal capacity cold plates may exacerbate boiling instabilities and result in device damage or failure due to local dryout conditions. Currently, limited studies are investigating these effects and potential mitigation strategies. In this study, step function, or pulsed, and ramped heat loads are investigated on a multimicrochannel silicon evaporator using R134a under a range of heat fluxes and ramping rates. The transient temperature response of the base heater is recorded using a calibrated infrared (IR) camera, while fluid flow visualization is captured using a video camera microscope. Pulsed heat loads resulted in a large temperature overshoot in the test section until the fluid reached the onset of nucleate boiling (ONB), while significant vapor backflow is observed despite the presence of channel inlet restrictions. Steady boiling is eventually reached and vapor backflow is suppressed. The magnitude of the temperature overshoot is observed to be strongly dependent on peak heat flux. In contrast, ramped heat loads resulted in lower peak temperature rises before ONB as well as significantly reduced vapor backflow compared to the pulsed heat loads.

References

1.
Atherton
,
W. A.
,
1984
,
From Compass to Computer
, pp.
237
267
.
2.
Palm
,
P.
,
Moisala
,
J.
,
Kivikero
,
A.
,
Tuominen
,
R.
, and
Iihola
,
A.
,
2005
, “
Embedding Active Components Inside Printed Circuit Board (PCB)—A Solution for Miniaturization of Electronics
,”
Proceedings 10th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces
, Irvine, CA, Mar. 16–18, pp.
1
4
.10.1109/ISAP M.2005.1432034
3.
Amon
,
C. H.
,
Murthy
,
J.
,
Yao
,
S. C.
,
Narumanchi
,
S.
,
Wu
,
C.
, and
Hsieh
,
C.
,
2001
, “
MEMS-Enabled Thermal Management of High-Heat-Flux Devices EDIFICE: Embedded Droplet Impingement for Integrated Cooling of Electronics
,”
Exp. Therm. Fluid Sci.,
25
(
5
), pp.
231
242
.10.1016/S0894-1777(01)00071-1
4.
Robinson
,
A. J.
,
2009
, “
A Thermal—Hydraulic Comparison of Liquid Microchannel and Impinging Liquid Jet Array Heat Sinks for High-Power Electronics Cooling
,”
IEEE Transactions on Components and Packaging Technologies,
32
(
2
), pp.
347
357
.10.1109/T CAP T.2008.2010408
5.
Fabis
,
P. M.
,
Shum
,
D.
, and
Windischmann
,
H.
,
1999
, “
Thermal Modeling of Diamond-Based Power Electronics Packaging
,”
Fifteenth IEEE Semi-Therm Symposium,
San Diego, CA, Mar. 9–11, pp.
98
104
.10.1109/ST HERM.1999.762434
6.
Skidmore
,
J. A.
,
Freitas
,
B. L.
,
Crawford
,
J.
,
Satariano
,
J.
,
Utterback
,
E.
,
DiMercurio
,
L.
,
Cutter
,
K.
, and
Sutton
,
S.
,
2000
, “
Silicon Monolithic Microchannel-Cooled Laser Diode Array
,”
Appl. Phys. Lett.
,
77
(
1
), pp.
10
12
.10.1063/1.126860
7.
Burk
,
B. E.
,
2018
,
A Computational Examination of Conjugate Heat Transfer During Microchannel Flow Boiling Using Finite Element Analysis
,
Colorado State University
, Fort Collins, CO.
8.
Bevis
,
T.
,
2016
,
High Heat Flux Phase Change Thermal Management of Laser Diode Arrays
,
Colorado State University
, Fort Collins, CO.
9.
Kim
,
S.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Saturated Flow Boiling Heat Transfer in Mini/Micro-Channels—Part I. Dryout Incipience Quality
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1226
1238
.10.1016/j.ijheatmasstransfer.2013.04.016
10.
Agostini
,
B.
, and
Bontemps
,
A.
,
2005
, “
Vertical Flow Boiling of Refrigerant R134a in Small Channels
,”
Int. J. Heat Mass Transfer
,
26
(
2
), pp.
296
306
.10.1016/j.ijheatfluidflow.2004.08.003
11.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2110
2118
.10.1016/j.ijheatmasstransfer.2008.10.022
12.
Basu
,
S.
,
Ndao
,
S.
,
Michna
,
G. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2011
, “
Flow Boiling of R134a in Circular Microtubes—Part I: Study of Heat Transfer Characteristics
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
5
), p.
051502
.10.1115/1.4003159
13.
Nascimento
,
F. J. D.
,
Leao
,
H. L. S. L.
, and
Ribatski
,
G.
,
2012
, “
Flow Boiling Heat Transfer of R134a in a Microchannel Heat Sink
,”
ASME
Paper No. ICNMM2012-73026.ICNMM2012-73026
14.
Kuo
,
C.
, and
Peles
,
Y.
,
2008
, “
Critical Heat Flux of Water at Subatmospheric Pressures in Microchannels
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
7
), p. 072403.10.1115/1.2909077
15.
Warrier
,
G. R.
,
Dhir
,
V. K.
, and
Momoda
,
L. A.
,
2002
, “
Heat Transfer and Pressure Drop in Narrow Rectangular Channels
,”
Exp. Therm. Fluid Sci.
,
26
(
1
), pp.
53
64
.10.1016/S0894-1777(02)00107-3
16.
Brutin
,
D.
,
2008
, “
Flow Boiling Instability
,” D. Li, ed.,
Encyclopedia of Microfluidics and Nanofluidics
, Springer, Boston, MA, pp.
687
695
.10.1007/978-0-387-48998-8_540
17.
Xu
,
J.
,
Zhou
,
J.
, and
Gan
,
Y.
,
2005
, “
Static and Dynamic Flow Instability of a Parallel Microchannel Heat Sink at High Heat Fluxes
,”
Energy Convers. Manage.
,
46
(
2
), pp.
313
334
.10.1016/j.enconman.2004.02.012
18.
Guodong
,
W.
,
Cheng
,
P.
, and
Wu
,
H.
,
2007
, “
Unstable and Stable Flow Boiling in Parallel Microchannels and in a Single Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4297
4310
.10.1016/j.ijheatmasstransfer.2007.01.033
19.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
3
), pp.
251
260
.10.1115/1.2150837
20.
Kuo
,
C.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
7
), p. 072402.10.1115/1.2908431
21.
Basu
,
S.
,
Werneke
,
B.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2015
, “
Transient Microscale Flow Boiling Heat Transfer Characteristics of HFE-7000
,”
Int. J. Heat Mass Transfer
,
90
, pp.
396
405
.10.1016/j.ijheatmasstransfer.2015.06.038
22.
Chen
,
G.
, and
Cheng
,
P.
,
2009
, “
Nucleate and Film Boiling on a Microheater Under Pulse Heating in a Microchannel
,”
Int. Commun. Heat Mass Transfer
,
36
(
5
), pp.
391
396
.10.1016/j.icheatmasstransfer.2009.01.022
23.
Kingston
,
T. A.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2020
, “
Time-Resolved Characterization of Microchannel Flow Boiling During Transient Heating: Part 1—Dynamic Response to a Single Heat Flux Pulse
,”
Int. J. Heat Mass Transfer
,
154
, p.
119643
.10.1016/j.ijheatmasstransfer.2020.119643
24.
Hodson
,
S.
,
McCarthy
,
K.
,
McCarthy
,
P.
, and
Issam
,
M.
,
2019
, “
A Dynamic Two-Phase Component Model Library for High Heat Flux Applications
,”
SAE
Technical Paper No. 2019-01-1386
.10.4271/2019-01-1386
25.
Huang
,
H.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2018
, “
Thermal Response of Multi- Microchannel Evaporators During Flow Boiling of Refrigerants Under Transient Heat Loads With Flow Visualization
,”
ASME J. Electron. Packag.,
138
(
3
), p. 031004.10.1115/1.4033487
26.
Zhang
,
T.
,
Tong
,
T.
,
Chang
,
J.
,
Peles
,
Y.
,
Prasher
,
R.
,
Jensen
,
M. K.
,
Wen
,
J. T.
, and
Phelan
,
P.
,
2009
, “
Ledinegg Instability in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5661
5674
.10.1016/j.ijheatmasstransfer.2009.09.008
27.
Boure
,
J. A.
,
Bergles
,
A. E.
, and
Tong
,
L. S.
,
1973
, “
Review of Two-Phase Flow Instability
,”
Nucl. Eng. Des.
,
25
(
2
), pp.
165
192
.10.1016/0029-5493(73)90043-5
28.
Bergles
,
A. E.
, and
Kandlikar
,
S.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer-Trans. ASME,
127
(
1
), pp.
101
107
.10.1115/1.1839587
29.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A. E.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2267
2281
.10.1016/j.ijheatmasstransfer.2007.08.027
30.
Bandhauer
,
T. M.
, and
Bevis
,
T. A.
,
2016
, “
High Heat Flux Boiling Heat Transfer for Laser Diode Arrays
,”
ASME
Paper No. ICNMM2016-7947.10.1115/ICNMM2016-7947
31.
Burk
,
B. E.
,
Grumstrup
,
T. P.
,
Bevis
,
T. A.
,
Kotovsky
,
J.
, and
Bandhauer
,
T. M.
,
2019
, “
Computational Examination of Two-Phase Microchannel Heat Transfer Correlations With Conjugate Heat Spreading
,”
Int. J. Heat Mass Transfer
,
132
, pp.
68
79
.10.1016/j.ijheatmasstransfer.2018.11.068
32.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, pp.
33
50
.
33.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
,
1964
, “
The Determination of Forced-Convection Surface-Boiling Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME,
86
(
3
), pp.
365
372
.10.1115/1.3688697
34.
Sato
,
T.
, and
Matsumura
,
H.
,
1964
, “
On the Conditions of Incipient Subcooled-Boiling With Forced Convection
,”
Bulletin of JSME
,
7
(
26
), pp.
392
398
.10.1299/jsme1958.7.392
35.
Davis
,
E. J.
, and
Anderson
,
G. H.
,
1966
, “
The Incipience of Nucleate Boiling in Forced Convection Flow
,”
AIChE J.
,
12
(
4
), pp.
774
780
.10.1002/aic.690120426
36.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
84
(
3
), pp.
207
213
.10.1115/1.3684339
37.
Kandlikar
,
S. G.
,
2006
, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.,
30
(
5
), pp.
441
447
.10.1016/j.expthermflusci.2005.10.001
38.
Cooper
,
M. G.
,
1984
, “
Heat Flow Rates in Saturated Nucleate Pool Boiling-A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
, pp.
157
239
.10.1016/S0065-2717(08)70205-3
39.
Heas
,
S.
,
Robidou
,
H.
,
Raynaud
,
M.
, and
Lallemand
,
M.
,
2003
, “
Onset of Transient Nucleate Boiling From a Thick Flat Sample
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
355
365
.10.1016/S0017-9310(02)00267-3
You do not currently have access to this content.