Abstract

Flow boiling in microchannel evaporators is widely recognized and promising for its compact structure, lower coolant usage, high heat transfer coefficient, ability to provide higher heat fluxes, and better temperature uniformity than single-phase liquid cooling. However, critical heat flux (CHF), local dry-outs, and flow instabilities can be significant roadblocks for practical implementation. Flow instabilities, like pressure drop oscillation, could lead to nonuniform wall temperature distribution, flow reversal, and local dryout, which can be detrimental to system performance. We conducted an experimental study of a vapor compression cycle incorporating a microchannel evaporator to investigate the role of evaporator design and various system parameters on the overall performance. These parameters include the expansion valve setting, the accumulator heat load, and the evaporator heat load. While the evaporator design, the testbed, and system parameters affect the system response in unique ways, flow instability can be explained based on the overall pressure drop occurring in the system and how it varies as a function of these factors. Based on the understanding gained from this experimental study, a dynamic control strategy was developed to stabilize the system facing transient heat loads. The system can successfully address transient evaporator heat loads with feedforward control, which would otherwise lead to pressure drop oscillation. We believe this study can be helpful in further development of active control techniques to achieve multiple objectives of maintaining fixed evaporator temperature, allowing higher cooling rates, avoiding CHF, and suppressing flow instabilities, even in the presence of transient heat loads.

References

1.
He
,
Z.
,
Yan
,
Y.
, and
Zhang
,
Z.
,
2021
, “
Thermal Management and Temperature Uniformity Enhancement of Electronic Devices by Micro Heat Sinks: A Review
,”
Energy
,
216
, p.
119223
.10.1016/j.energy.2020.119223
2.
Huang
,
H.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2016
, “
Thermal Response of Multi-Microchannel Evaporators During Flow Boiling of Refrigerants Under Transient Heat Loads With Flow Visualization
,”
ASME J. Electron. Packag.
,
138
(
3
), p.
4033487
.10.1115/1.4033487
3.
Jin
,
Q.
,
Wen
,
J. T.
, and
Narayanan
,
S.
,
2020
, “
Temperature Synchronization Across Parallel Microchannels During Flow Boiling
,”
Int. J. Therm. Sci.
,
156
, p.
106476
.10.1016/j.ijthermalsci.2020.106476
4.
Narayanan
,
S.
,
2020
, “
A Dynamically Controllable Evaporative Cooling System for Thermal Management of Transient Heat Loads
,”
Int. J. Heat Mass Transfer
,
148
, p.
119098
.10.1016/j.ijheatmasstransfer.2019.119098
5.
Venkatadri
,
V.
,
Sammakia
,
B.
,
Srihari
,
K.
, and
Santos
,
D.
,
2011
, “
A Review of Recent Advances in Thermal Management in Three Dimensional Chip Stacks in Electronic Systems
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041011
.10.1115/1.4005298
6.
Narayanan
,
S.
,
Fedorov
,
A. G.
, and
Joshi
,
Y. K.
,
2013
, “
Heat and Mass Transfer During Evaporation of Thin Liquid Films Confined by Nanoporous Membranes Subjected to Air Jet Impingement
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
300
311
.10.1016/j.ijheatmasstransfer.2012.11.015
7.
Bostanci
,
H.
,
Yata
,
V. V. R.
, and
Kaluvan
,
S.
,
2021
, “
Flow-Controlled Spray Cooling Approaches for Dynamic Thermal Management
,”
ASME J. Electron. Packag.
,
143
(
3
), p.
4049174
.10.1115/1.4049174
8.
Jin
,
Q.
,
Wen
,
J. T.
, and
Narayanan
,
S.
,
2020
, “
Moving Boundary Model for Dynamic Control of Multi-Evaporator Cooling Systems Facing Variable Heat Loads
,”
Int. J. Refrig.
,
120
, pp.
481
492
.10.1016/j.ijrefrig.2020.09.014
9.
Ruspini
,
L. C.
,
Marcel
,
C. P.
, and
Clausse
,
A.
,
2014
, “
Two-Phase Flow Instabilities: A Review
,”
Int. J. Heat Mass Transfer
,
71
, pp.
521
548
.10.1016/j.ijheatmasstransfer.2013.12.047
10.
Liang
,
G.
, and
Mudawar
,
I.
,
2019
, “
Review of Single-Phase and Two-Phase Nanofluid Heat Transfer in Macro-Channels and Micro-Channels
,”
Int. J. Heat Mass Transfer
,
136
, pp.
324
354
.10.1016/j.ijheatmasstransfer.2019.02.086
11.
Jin
,
Q.
,
Wen
,
J. T.
, and
Narayanan
,
S.
,
2021
, “
The Analysis and Prediction of Pressure Drop Oscillation in Phase-Change Cooling Systems
,”
Int. J. Heat Mass Transfer
,
165
, p.
120621
.10.1016/j.ijheatmasstransfer.2020.120621
12.
Balasubramanian
,
K.
,
Jagirdar
,
M.
,
Lee
,
P.
,
Teo
,
C.
, and
Chou
,
S.
,
2013
, “
Experimental Investigation of Flow Boiling Heat Transfer and Instabilities in Straight Microchannels
,”
Int. J. Heat Mass Transfer
,
66
, pp.
655
671
.10.1016/j.ijheatmasstransfer.2013.07.050
13.
O'Neill
,
L. E.
, and
Mudawar
,
I.
,
2020
, “
Review of Two-Phase Flow Instabilities in Macro- and Microchannel Systems
,”
Int. J. Heat Mass Transfer
,
157
, p.
119738
.10.1016/j.ijheatmasstransfer.2020.119738
14.
Lee
,
S.
,
V.S
,
D.
, and
Mudawar
,
I.
,
2018
, “
Frequency Analysis of Pressure Oscillations in Large Lengthto-Diameter Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
116
, pp.
273
291
.10.1016/j.ijheatmasstransfer.2017.08.107
15.
Pan
,
L.-M.
,
Yan
,
R.-G.
,
Huang
,
H.-J.
,
He
,
H.
, and
Li
,
P.-F.
,
2018
, “
Experimental Study on the Flow Boiling Pressure Drop Characteristics in Parallel Multiple Microchannels
,”
Int. J. Heat Mass Transfer
,
116
, pp.
642
654
.10.1016/j.ijheatmasstransfer.2017.09.033
16.
Ritchey
,
S. N.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Local Measurement of Flow Boiling Heat Transfer in an Array of Non-Uniformly Heated Microchannels
,”
Int. J. Heat Mass Transfer
,
71
, pp.
206
216
.10.1016/j.ijheatmasstransfer.2013.12.012
17.
Rahman
,
E.
, and
Singh
,
S.
,
2018
, “
Non-Linear Stability Analysis of Pressure Drop Oscillations in a Heated Channel
,”
Chem. Eng. Sci.
,
192
, pp.
176
186
.10.1016/j.ces.2018.07.013
18.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A.
,
Lin
,
H.
, and
Cummins
,
G.
,
2009
, “
Two-Phase Flow Instabilities in a Silicon Microchannels Heat Sink
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
854
867
.10.1016/j.ijheatfluidflow.2009.03.013
19.
Grzybowski
,
H.
, and
Mosdorf
,
R.
,
2018
, “
Dynamics of Pressure Drop Oscillations During Flow Boiling Inside Minichannel
,”
Int. Commun. Heat Mass Transfer
,
95
, pp.
25
32
.10.1016/j.icheatmasstransfer.2018.03.025
20.
Hou
,
T.
, and
Chen
,
Y.
,
2020
, “
Pressure Drop and Heat Transfer Performance of Microchannel Heat Exchanger With Different Reentrant Cavities
,”
Chem. Eng. Process. Process Intensification
,
153
, p.
107931
.10.1016/j.cep.2020.107931
21.
Cheng
,
X.
, and
Wu
,
H.
,
2021
, “
Improved Flow Boiling Performance in High-Aspect-Ratio Interconnected Microchannels
,”
Int. J. Heat Mass Transfer
,
165
, p.
120627
.10.1016/j.ijheatmasstransfer.2020.120627
22.
Bai
,
P.
,
Tang
,
T.
, and
Tang
,
B.
,
2013
, “
Enhanced Flow Boiling in Parallel Microchannels With Metallic Porous Coating
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
291
297
.10.1016/j.applthermaleng.2013.04.067
23.
Sadaghiani
,
A. K.
,
Saadi
,
N. S.
,
Parapari
,
S. S.
,
Karabacak
,
T.
,
Keskinoz
,
M.
, and
Ko,Sar
,
A.
,
2017
, “
Boiling Heat Transfer Performance Enhancement Using Micro and Nano Structured Surfaces for High Heat Flux Electronics Cooling Systems
,”
Appl. Therm. Eng.
,
127
, pp.
484
498
.10.1016/j.applthermaleng.2017.08.018
24.
Lee
,
H. J.
,
Liu
,
D. Y.
, and
Yao
,
S.-C.
,
2010
, “
Flow Instability of Evaporative Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1740
1749
.10.1016/j.ijheatmasstransfer.2010.01.016
25.
Raj
,
S.
,
Shukla
,
A.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2019
, “
A Novel Stepped Microchannel for Performance Enhancement in Flow Boiling
,”
Int. J. Heat Mass Transfer
,
144
, p.
118611
.10.1016/j.ijheatmasstransfer.2019.118611
26.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.10.1115/1.2150837
27.
Deng
,
D.
,
Chen
,
L.
,
Wan
,
W.
,
Fu
,
T.
, and
Huang
,
X.
,
2019
, “
Flow Boiling Performance in Pin Fin- Interconnected Reentrant Microchannels Heat Sink in Different Operational Conditions
,”
Appl. Therm. Eng.
,
150
, pp.
1260
1272
.10.1016/j.applthermaleng.2019.01.092
28.
Goyal
,
A.
,
Staedter
,
M. A.
, and
Garimella
,
S.
,
2019
, “
A Review of Control Methodologies for Vapor Compression and Absorption Heat Pumps
,”
Int. J. Refrig.
,
97
, pp.
1
20
.10.1016/j.ijrefrig.2018.08.026
29.
Yang
,
P.
,
Zhang
,
Y.
,
Wang
,
S.
, and
Liu
,
Y.
,
2020
, “
Experimental Study on Liquid-Vapor Two-Phase Pressure Drop of Pulsating Flow in an Evaporator
,”
Int. J. Heat Mass Transfer
,
158
, p.
119998
.10.1016/j.ijheatmasstransfer.2020.119998
30.
Tillery
,
S. W.
,
Heffington
,
S. N.
,
Smith
,
M. K.
, and
Glezer
,
A.
,
2006
, “
Boiling Heat Transfer Enhancement Using a Submerged, Vibration-Induced Jet
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
145
149
.10.1115/1.2188954
31.
Zhang
,
T.
,
Peles
,
Y.
,
Wen
,
J. T.
,
Tong
,
T.
,
Chang
,
J.-Y.
,
Prasher
,
R.
, and
Jensen
,
M. K.
,
2010
, “
Analysis and Active Control of Pressure-Drop Flow Instabilities in Boiling Microchannel Systems
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2347
2360
.10.1016/j.ijheatmasstransfer.2010.02.005
32.
Bhide
,
R. R.
,
Singh
,
S. G.
,
Sridharan
,
A.
, and
Agrawal
,
A.
,
2011
, “
An Active Control Strategy for Reduction of Pressure Instabilities During Flow Boiling in a Microchannel
,”
J. Micromech. Microeng.
,
21
(
3
), p.
035021
.10.1088/0960-1317/21/3/035021
33.
Liu
,
G.
,
Xu
,
J.
,
Yang
,
Y.
, and
Zhang
,
W.
,
2010
, “
Active Control of Flow and Heat Transfer in Silicon Microchannels
,”
J. Micromech. Microeng.
,
20
(
4
), p.
045006
.10.1088/0960-1317/20/4/045006
34.
Jin
,
Q.
,
Wen
,
J.
, and
Narayanan
,
T. S.
,
2018
, “
Analysis and Active Control of Pressure Drop Oscillation in Microchannel Vapor Compression Cycle
,”
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Vol.
5
, San Diego, CA, May 29–June 1
, pp. 842–849.10.1109/ITHERM.2018.8419637
35.
Jin
,
Q.
,
Wen
,
J. T.
, and
Narayanan
,
S.
,
2021
, “
Dynamic Control of Pressure Drop Oscillation in a Microchannel Cooling System
,”
Heat Transfer Eng.
,
42
(
6
), pp.
517
16
.10.1080/01457632.2019.1707391
36.
Jin
,
Q.
,
Wen
,
J. T.
, and
Narayanan
,
S.
,
2021
, “
Dynamic Control of Microchannel Cooling System With Unanticipated Evaporator Heat Loads
,”
Appl. Therm. Eng.
,
183
, p.
116225
.10.1016/j.applthermaleng.2020.116225
37.
Yang
,
Z.
,
2016
, “
Advanced Control of Vapor Compression Cycle for Large and Transient Heat Flux Removal
,”
Ph.D. thesis
,
Rensselaer Polytechnic Institute
, Troy, NY.http://digitool.rpi.edu:8881/R/2STMCIEV8YE33T159247LI76CGTCEGC4QPMNJX2SVQ25UK8JEQ-00393?func=dbin-jumpfull&object_id=177866&local_base=GEN01&pds_handle=GUEST
38.
Jin
,
Q.
,
Wen
,
J. T.
, and
Narayanan
,
S.
,
2019
, “
Characteristics of Pressure Drop Oscillation in a Microchannel Cooling System
,”
Appl. Therm. Eng.
,
160
, p.
113849
.10.1016/j.applthermaleng.2019.113849
You do not currently have access to this content.