Abstract

Cu pillar microbumps with polymer cores have been demonstrated to effectively reduce thermomechanical stress and improve joint reliability. Fabricating polymer cores by a printing approach was proposed to overcome the limitations in conventional fabrication process. Cylindrical polymer cores with diameter of 20 μm and height of 30 μm were successfully printed. Surface metallization was subsequently applied on the printed polymer cores and Cu pillar microbumps with printed polymer cores with diameter of 35 μm and height of 35 μm were eventually achieved. To study the reliability performance of the interconnect joints made of Cu pillar microbumps with printed polymer cores, flip-chip bonding technology was successfully introduced and the interconnect joints between a designed bismaleimide triazine (BT) substrate and a silicon chip were formed. The interconnect joints made of conventional Cu pillars with identical dimensions were prepared for comparison. The reliability performance of the joints was investigated under temperature cycling condition and drop condition, respectively. Printed polymer cores increased the characteristic life by 32% in a temperature cycling test (0–100 °C), while the drop test showed that printed polymer cores increased the characteristic life by four times due to the extra compliance provided by the printed polymer cores. It can be concluded that Cu pillar microbumps with printed polymer cores can effectively reduce stress and improve joint reliability.

References

1.
Jeong
,
M. H.
,
Lim
,
G. T.
,
Kim
,
B. J.
,
Lee
,
K. W.
,
Kim
,
J. D.
,
Joo
,
Y. C.
, and
Park
,
Y. B.
,
2010
, “
Interfacial Reaction Effect on Electrical Reliability of Cu Pillar/Sn Bumps
,”
J. Electron. Mater.
,
39
(
11
), pp.
2368
2374
.10.1007/s11664-010-1345-7
2.
Liu
,
D.
, and
Park
,
S.
,
2014
, “
Three-Dimensional and 2.5 Dimensional Interconnection Technology: State of the Art
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
014001
.10.1115/1.4026615
3.
Che
,
F. X.
,
Lin
,
J. K.
,
Au
,
K. Y.
,
Hsiao
,
H. Y.
, and
Zhang
,
X.
,
2015
, “
Stress Analysis and Design Optimization for Low-k Chip With Cu Pillar Interconnection
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
9
), pp.
1273
1283
.10.1109/TCPMT.2015.2461020
4.
Orii
,
Y.
,
Toriyama
,
K.
,
Kohara
,
S.
,
Noma
,
H.
,
Okamoto
,
K.
,
Toyoshima
,
D.
, and
Uenishi
,
K.
,
2011
, “
Micro Structure Observation and Reliability Behavior of Reripheral Flip Chip Interconnections With Solder-Capped Cu Pillar Bumps
,”
Trans. Jpn. Inst. Electron. Packag.
,
4
(
1
), pp.
73
86
.10.5104/jiepeng.4.73
5.
Joblot
,
S.
,
Bar
,
P.
,
Sibuet
,
H.
,
Ferrandon
,
C.
,
Reig
,
B.
,
Jan
,
S.
,
Arnaud
,
C.
,
Lamy
,
Y.
,
Coudrain
,
P.
,
Coffy
,
R.
,
Boillon
,
O.
, and
Carpentier
,
J. F.
,
2013
, “
Copper Pillar Interconnect Capability for mmwave Applications in 3D Integration Technology
,”
Microelectron. Eng.
,
107
, pp.
72
79
.10.1016/j.mee.2012.10.024
6.
Wei
,
T.
,
Qiu
,
X.
,
Lo
,
J. C.
, and
Lee
,
S. R.
,
2015
, “
Wafer Level Bumping Technology for High Voltage LED Packaging
,”
Tenth International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)
,
Taipei, Taiwan
, Oct. 21–23, pp.
54
57
.10.1109/IMPACT.2015.7365183
7.
Wang
,
M. H.
, and
Wu
,
M. L.
,
2013
, “
Thermo-Mechanical Stress of Underfilled 3D IC Packaging
,”
Int. Symp. Microelectron.
,
2013
(
1
), pp.
285
290
.10.4071/isom-2013-TP34
8.
Liu
,
H.
,
Wang
,
K.
,
Aasmundtveit
,
K. E.
, and
Hoivik
,
N.
,
2012
, “
Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding
,”
J. Electron. Mater.
,
41
(
9
), pp.
2453
2462
.10.1007/s11664-012-2060-3
9.
Hsieh
,
M. C.
,
Lee
,
C. C.
, and
Hung
,
L. C.
,
2012
, “
Reliability Assessments and Designs for Fine Pitch Flip Chip Packages With Cu Column Bumps
,”
Seventh International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)
,
Taipei, Taiwan
, Oct. 24–26, pp.
280
283
.10.1109/IMPACT.2012.6420243
10.
Tsao
,
P. H.
,
Huang
,
C.
,
Lii
,
M. J.
,
Su
,
B.
, and
Tsai
,
N. S.
,
2004
, “
Underfill Characterization for Low-k Dielectric/Cu Interconnect IC Flip-Chip Package Reliability
,”
54th Electronic Components and Technology Conference (ECTC)
,
Las Vegas, NV
, Jun. 4, pp.
767
769
.10.1109/ECTC.2004.1319423
11.
Mercado
,
L. L.
,
Kuo
,
S. M.
,
Goldberg
,
C.
, and
Frear
,
D.
,
2003
, “
Impact of Flip-Chip Packaging on Copper/Low-K Structures
,”
IEEE Trans. Adv. Packag.
,
26
(
4
), pp.
433
440
.10.1109/TADVP.2003.821084
12.
Lim
,
G. T.
,
Kim
,
B. J.
,
Lee
,
K. W.
,
Lee
,
M. J.
,
Joo
,
Y. C.
, and
Park
,
Y. B.
,
2008
, “
Study on the Intermetallic Compound Growth and Interfacial Adhesion Energy of Cu Pillar Bump
,”
J. Microelectron. Packag. Soc.
,
15
(
4
), pp.
17
24
.https://www.researchgate.net/publication/264185296_Study_on_the_Intermetallic_Compound_Growth_and_Interfacial_Adhesion_Energy_of_Cu_Pillar_Bump
13.
Kim
,
B. J.
,
Lim
,
G. T.
,
Kim
,
J.
,
Lee
,
K.
,
Park
,
Y. B.
,
Lee
,
H. Y.
, and
Joo
,
Y. C.
,
2010
, “
Intermetallic Compound Growth and Reliability of Cu Pillar Bumps Under Current Stressing
,”
J. Electron. Mater.
,
39
(
10
), pp.
2281
2285
.10.1007/s11664-010-1324-z
14.
Kwak
,
J. B.
, and
Chung
,
S.
,
2015
, “
Thermal Fatigue Reliability for Cu-Pillar Bump Interconnection in Flip Chip on Module and Underfill Effects
,”
Soldering Surf. Mount Technol.
,
27
(
1
), pp.
1
6
.10.1108/SSMT-03-2014-0008
15.
Lee
,
M. W.
,
Kim
,
J. Y.
,
Kim
,
J. D.
, and
Lee
,
C. H.
,
2010
, “
Below 45 nm Low-k Layer Stress Minimization Guide for High-Performance Flip-Chip Packages With Copper Pillar Bumping
,”
60th Electronic Components and Technology Conference (ECTC)
,
Las Vegas, NV
, June 1–4, pp.
1623
1630
.10.1109/ECTC.2010.5490766
16.
Zhai
,
C. J.
,
Ozkan
,
U.
,
Dubey
,
A.
,
Blish
,
R. C.
, and
Master
,
R. N.
,
2006
, “
Investigation of Cu/Low-k Film Delamination in Flip Chip Packages
,”
56th Electronic Components and Technology Conference (ECTC)
,
San Diego, CA
, May 30–June 2, pp.
709
717
.10.1109/ECTC.2006.1645735
17.
Jung
,
B. Y.
,
Che
,
F. X.
, and
Lin
,
J. K.
,
2015
, “
Development of Compliant Cu Pillar for Flip Chip Package
,”
IEEE 17th Electronics Packaging and Technology Conference (EPTC)
,
Singapore
, Dec. 2–4, pp.
1
4
.10.1109/EPTC.2015.7412352
18.
NCAP
,
2006
, “
Wafer-Level Fabrication Method of Cu Pillar With Polymer Core
,”
National Center for Advanced Packaging
,
Wuxi, China
, CN Patent No. 103943579 A.https://patents.google.com/patent/CN103943579A/en
19.
Aggarwal
,
A. O.
,
Raj
,
P. M.
, and
Tummala
,
R. R.
,
2004
, “
High Aspect Ratio Metal-Polymer Composite Structures for Nano Interconnects
,”
Ninth International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces
,
Atlanta, GA
, Mar. 24–26, pp.
182
186
.10.1109/ISAPM.2004.1288010
20.
Qiu
,
X.
,
Lo
,
J. C.
,
Lee
,
S. R.
,
Liou
,
Y. H.
, and
Chiu
,
P.
,
2019
, “
Evaluation and Benchmarking of Cu Pillar Micro-Bumps With Printed Polymer Core
,”
International Conference on Electronics Packaging (ICEP)
,
Niigata, Japan
, Apr. 17–20, pp.
24
27
.10.23919/ICEP.2019.8733457
21.
Ladani
,
L.
,
2019
, “
The Potential for Metal–Carbon Nanotubes Composites as Interconnects
,”
J. Electron. Mater.
,
48
(
1
), pp.
92
98
.10.1007/s11664-018-6734-3
22.
The Association Connecting Electronics Industries (IPC)
,
2002
, “
Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments
,”
IPC
,
Bannockburn, IL
,
Standard No. IPC-9701A
.https://www.ipc.org/TOC/IPC-9701A.pdf
23.
The Joint Electron Device Engineering Council (JEDEC)
,
2005
,
Temperature Cycling
,”
JEDEC
,
Arlington, VA
,
Standard No. JESD22-A104D
. https://espec.com/na/chamber_faq/answer/JESD22-A104D
24.
The Joint Electron Device Engineering Council (JEDEC)
,
2016
, “
Board Level Drop Test Method of Components for Handheld Electronic Products
,”
JEDEC
,
Arlington, VA
,
Standard No. JESD22-B111A
.https://www.jedec.org/standards-documents/docs/jesd-22-b111#:~:text=JESD22%2DB111A&text=This%20Board%20Level%20Drop%20Test,circuit%20board%20causes%20product%20failure
25.
The Joint Electron Device Engineering Council (JEDEC)
,
2004
, “
Mechanical Shock
,”
JEDEC
,
Arlington, VA
,
Standard No. JESD22-B104C
.https://www.jedec.org/standards-documents/docs/jesd-22-b104c
You do not currently have access to this content.