Abstract

Detailed heat transfer distributions of multiple microscaled tapered jets orthogonally impinging on the surface of a high-power density silicon wall is presented. The tapered jets issued from two different impingement setup are studied—(a) single circular nozzle and (b) dual circular nozzles. Jets are issued from the inlet(s) at four different Reynolds numbers {Re = 8000, 12,000, 16,000, 20,000}. The spacing between the tapered nozzle jets and the bare die silicon wall (z/d) is adjusted to be 4, 8, 12, and 16 jet nozzle diameters away from impinging influence. The impact of varying the nozzle to the silicon wall (z/d) standoff spacing up to 16 nozzle jet diameters and its effects on flow fields on the surface of the silicon, specifically the entrainment pattern on the silicon surface, is presented. Heat transfer characteristics of impinging jets on the hot silicon wall is investigated by means of large eddy simulations (LES) at a Reynolds of 20,000 on each of the four z/d spacing and compared against its equivalent Reynolds-averaged Navier–Stokes (RANS) cases. Highest heat transfer coefficients are obtained for the dual inlet system. A demarcation boundary region connecting all the microvortices between impinging jets is prominently visible at smaller z/d spacing—the region where the target silicon wall is within the sphere of influence of the potential core of the jet. This research focuses on the underlying physics of multiple tapered nozzles jet impingement issued from single and dual nozzles and its impact on turbulence, heat transfer distributions, entrainment, and other pertinent flow-field characteristics.

References

1.
Tian
,
Z.
,
Lee
,
S.
, and
Chen
,
G.
,
2014
, “
A Comprehensive Review of Heat Transfer in Thermoelectric Materials and Devices
,”
Annu. Rev. Heat Transfer
,
17
(
N/A
), pp.
425
483
.10.1615/AnnualRevHeatTransfer.2014006932
2.
Mohammed
,
R. K.
,
Chao
,
T.
,
Subrahmanyam
,
W. P.
, and
Prabhugoud
,
M.
,
2013
, “
TEC Cracking in Temperature Margining Liquid-Cooled Thermal Tools in Post-Silicon Validation
,”
IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 17–21, pp.
85
92
.10.1109/SEMI-THERM.2013.6526810
3.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
,
2007
, “
Towards a Thermal Moore's Law
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
462
474
.10.1109/TADVP.2007.898517
4.
Kandlikar
,
S. G.
,
2005
, “
High Flux Heat Removal With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
,
26
(
8
), pp.
5
14
.10.1080/01457630591003655
5.
Torresola
,
J.
, et al.,
2005
, “
Density Factor Approach to Representing Impact of Die Power Maps on Thermal Management
,”
IEEE Trans. Adv. Packag.
,
28
(
4
), pp.
659
664
.10.1109/TADVP.2005.858439
6.
Subrahmanyam
,
P.
,
Krishnamoorthy
,
A.
, and
Harvest
,
J.
,
2018
, “
Flow Field Characteristics of Multiple Impinging Tapered Nozzles in Confined Channels for High Heat Flux Applications
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, pp.
436
448
.10.1109/ITHERM.2018.8419558
7.
Rausch
,
M. H.
,
Kretschmer
,
L.
,
Will
,
S.
,
Leipertz
,
A.
, and
Fröba
,
A. P.
,
2015
, “
Density, Surface Tension, and Kinematic Viscosity of Hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500
,”
J. Chem. Eng., Data
,
60
(
12
), pp.
3759
3765
.10.1021/acs.jced.5b00691
8.
Zakhidov
,
A.
,
Reineke
,
S.
,
Lüssem
,
B.
, and
Leo
,
K.
,
2012
, “
Hydrofluoroethers as Heat-Transfer Fluids for OLEDs: Operational Range, Stability, and Efficiency Improvement
,”
Org. Electron.
,
13
(
3
), pp.
356
360
.10.1016/j.orgel.2011.12.004
9.
Han
,
B.
, and
Goldstein
,
R. J.
,
2006
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
147
161
.10.1111/j.1749-6632.2001.tb05849.x
10.
Fitzgerald
,
J. A.
, and
Garimella
,
S. V.
,
1998
, “
A Study of the Flow Field of a Confined and Submerged Impinging Jet
,”
Int. J. Heat Mass Transfer
,
41
(
8–9
), pp.
1025
1034
.10.1016/S0017-9310(97)00205-6
11.
Webb
,
B.
, and
Ma
,
C. F.
,
1995
, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transfer
,
26
, pp.
105
217
.10.1016/S0065-2717(08)70296-X
12.
Choo
,
K.
,
Friedrich
,
B. K.
,
Glaspell
,
A. W.
, and
Schilling
,
K. A.
,
2016
, “
The Influence of Nozzle-to-Plate Spacing on Heat Transfer and Fluid Flow of Submerged Jet Impingement
,”
Int. J. Heat Mass Transfer
,
97
, pp.
66
69
.10.1016/j.ijheatmasstransfer.2016.01.060
13.
Jeffers
,
N.
,
Stafford
,
J.
,
Conway
,
C.
,
Punch
,
J.
, and
Walsh
,
E.
,
2016
, “
The Influence of the Stagnation Zone on the Fluid Dynamics at the Nozzle Exit of a Confined and Submerged Impinging Jet
,”
Exp. Fluids
, 57, Article No. 17.10.1007/s00348-015-2092-6
14.
Geers
,
L. F. G.
,
Hanjalic
,
K.
, and
Tummers
,
M. J.
,
2005
, “
Wall Imprint of Turbulent Structures and Heat Transfer in Multiple Impinging Jet Arrays
,”
J. Fluid Mech.
,
546
(
1
), pp.
255
284
.10.1017/S002211200500710X
15.
Garimella
,
S. V.
, and
Rice
,
R. A.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
871
877
.10.1115/1.2836304
16.
Martin
,
H.
,
1997
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
17.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
S.
, and
Douglas
,
W.
,
1989
, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
,
2
(
2
), pp.
157
197
.10.1615/AnnualRevHeatTransfer.v2.60
18.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M.
, and
Button
,
B.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
19.
Lienhard
,
J.
,
1995
, “
Liquid Jet Impingement
,”
Annu. Rev. Heat Transfer
,
6
(
6
), pp.
199
270
.10.1615/AnnualRevHeatTransfer.v6.60
20.
Schlichting
,
H.
,
1968
,
Boundary Layer Theory
,
McGraw-Hill
,
New York
, p.
681
.
21.
Stevens
,
J. J.
, and
Webb
,
B. W.
,
1992
, “
Measurements of the Free Surface Flow Structure Under an Impinging Free Liquid Jet
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
79
84
.10.1115/1.2911271
22.
Duda
,
J. L.
, and
Vrentas
,
J. S.
,
1967
, “
Fluid Mechanics in Laminar Liquid Jets
,”
Chem. Eng. Sci.
,
22
(
6
), pp.
855
869
.10.1016/0009-2509(67)80150-7
23.
Schlunder
,
E. U.
, and
Gnielinski
,
V.
,
1967
, “
Heat and Mass Transfer Between Surfaces and Impinging Jets
,”
Chem. Ing. Tech.
,
39
, pp.
578
584
.10.1002/cite.330390915
24.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
(
10
), pp.
1261
1272
.10.1016/0017-9310(65)90054-2
25.
Pan
,
Y.
,
Stevens
,
J.
, and
Webb
,
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-Surface Liquid Jets: Part 1—Turbulent Flow Structure
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
874
879
.10.1115/1.2911895
26.
Pan
,
Y.
,
Stevens
,
J.
, and
Webb
,
B. W.
,
1992
, “
Effect of Nozzle Configuration on Transport in the Stagnation Zone of Axisymmetric, Impinging Free-Surface Liquid Jets: Part 2—Local Heat Transfer
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
880
886
.10.1115/1.2911896
27.
Womac
,
D. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1993
, “
Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
106
115
.10.1115/1.2910635
28.
Gardon
,
R.
, and
Cobonpue
,
J.
,
1962
, “
Heat Transfer Between a Flat Plate and Jets of Air Impinging on It
,”
Materials Science
.https://www.semanticscholar.org/paper/Heat-Transfer-Between-a-Flat-Plate-and-Jets-of-Air-Gardon/281e4366cff5ebd3654ffa9c39a2dcb897764a4f
29.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
30.
Errico
,
M.
,
1986
, “
A Study of the Interaction of Liquid Jets With Solid Surfaces
,” Ph.D. thesis,
University of California
, San Diego, CA.
31.
Garimella
,
S. V.
, and
Nenaydykh
,
B.
,
1996
, “
Nozzle-Geometry Effects in Liquid Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2915
2923
.10.1016/0017-9310(95)00382-7
32.
Scholtz
,
M. T.
, and
Trass
,
O.
,
1970
, “
Mass Transfer in a Non-Uniform Impinging Jet
,”
AIChE J.
,
16
(
1
), pp.
82
96
.10.1002/aic.690160117
33.
Sparrow
,
E. M.
, and
Lee
,
L.
,
1975
, “
Analysis of Flow Field and Impingement Heat/Mass Transfer Due to a Nonuniform Slot Jet
,”
ASME J. Heat Transfer
,
97
(
2
), pp.
191
197
.10.1115/1.3450340
34.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.10.1115/1.3445306
35.
Martin
,
E. L.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2013
, “
Impingement Heat Transfer Enhancement on a Cylindrical, Leading Edge Model With Varying Jet Temperatures
,”
ASME J. Turbomach.
,
135
(
3
), p.
031021
.10.1115/1.4007529
36.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
37.
Florschuetz
,
L. W.
, and
Su
,
C. C.
,
1987
, “
Effects of Crossflow Temperature on Heat Transfer Within an Array of Impinging Jets
,”
ASME J. Heat Transfer
,
109
(
1
), pp.
74
82
.10.1115/1.3248072
38.
Draksler
,
M.
,
Ničeno
,
B.
,
Končar
,
B.
, and
Cizelj
,
L.
,
2014
, “
Large Eddy Simulation of Multiple Impinging Jets in Hexagonal Configuration—Mean Flow Characteristics
,”
Int. Heat Fluid Flow
,
46
, pp.
147
157
.10.1016/j.ijheatfluidflow.2014.01.005
39.
Shin
,
J.-H.
,
Rozenfeld
,
T.
,
Shockner
,
T.
,
Vutha
,
A. K.
,
Wang
,
Y.
,
Ziskind
,
G.
, and
Peles
,
Y.
,
2019
, “
Local Het Transfer Under an Array of Micro Jet Impingement Using HFE-7000
,”
Appl. Therm. Eng.
,
158
, p.
113716
.10.1016/j.applthermaleng.2019.113716
40.
Menter
,
F.
, and
Egorov
,
Y.
, “
A Scale Adaptive Simulation Model Using Two-Equation Models
,”
AIAA
Paper No. 2005-1095.10.2514/6.2005-1095
41.
Menter
,
F.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions: Part 1—Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.10.1007/s10494-010-9264-5
42.
Menter
,
F.
,
Egorov
,
Y.
,
Lechner
,
R.
, and
Cokljat
,
D.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions: Part 2—Application to Complex Flows
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
139
165
.10.1007/s10494-010-9265-4
43.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Equations
,”
Mon. Weather Rev
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
44.
Subrahmanyam
,
P.
, and
Krishnamoorthy
,
A.
,
2019
, “
Micro-Scale Nozzled Jet Heat Transfer Distributions and Flow Field Entrainment Effects Directly on Die
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
Las Vegas, NV
, May 28–31, pp.
1082
1097
.10.1109/ITHERM.2019.8757406
45.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
46.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Comparison of Convective Heat Transfer to Perimeter and Center Jets in a Confined, Impinging Array of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
3025
3030
.10.1016/0017-9310(94)90357-3
47.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficient for Inclined and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
132
137
.10.1115/1.3244224
48.
San
,
J.-Y.
, and
Chen
,
J.-J.
,
2014
, “
Effects of Jet-to-Jet Spacing and Jet Height on Heat Transfer Characteristics of an Impinging Jet Array
,”
Int. J. Heat Mass Transfer
,
71
, pp.
8
17
.10.1016/j.ijheatmasstransfer.2013.11.079
49.
Slayzak
,
S. J.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
,
1994
, “
Effect of Interaction Between Adjacent Free Surface Planar Jets on Local Heat Transfer From the Impingement Surface
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
269
282
.10.1016/0017-9310(94)90098-1
50.
Saripalli
,
K. R.
,
1983
, “
Visualization of Multijet Impingement Flow
,”
AIAA J.
,
21
(
4
), pp.
483
484
.10.2514/3.8102
51.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.