Abstract

Rapid temperature transients sustained during the operation of high-voltage electronics can be difficult to manage by relying solely on uniform heat removal mechanisms. Phase-change materials (PCMs) can be useful as a buffer against these intermittent temperature spikes when integrated into electronic packages. However, their integration poses challenges of both physical and electrical interactions within the package, particularly in high-voltage systems. This study aims to evaluate electrical and thermal properties of nano-enhanced PCMs to inform their integration in high-voltage systems. The nanocomposites are obtained by seeding 3 × 10−5 and 3 × 10−4 wt % of gold and iron oxide particles to sorbitol. Improvements in thermal properties including thermal conductivity as high as 8% are observed; however, this comes at the expense of the dielectric strength of the PCM. Additionally, an implementation scheme for the nano-enhanced PCMs in a high-voltage-capable power module is proposed with accompanying computational and experimental performance data.

References

1.
Marbut
,
C. J.
,
Montazeri
,
M.
, and
Huitink
,
D. R.
,
2018
, “
Rapid Solder Interconnect Fatigue Life Test Methodology for Predicting Thermomechanical Reliability
,”
IEEE Trans. Device Mater. Reliab.
,
18
(
3
), pp.
412
421
.10.1109/TDMR.2018.2851541
2.
Andresen
,
M.
,
Ma
,
K.
,
Buticchi
,
G.
,
Falck
,
J.
,
Blaabjerg
,
F.
, and
Liserre
,
M.
,
2018
, “
Junction Temperature Control for More Reliable Power Electronics
,”
IEEE Trans. Power Electron.
,
33
(
1
), pp.
765
776
.10.1109/TPEL.2017.2665697
3.
Iradukunda
,
A.
,
Huitink
,
D.
, and
Luo
,
F.
,
2020
, “
A Review of Advanced Thermal Management Solutions and the Implications for Integration in High Voltage Packages
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
8
(
1
), pp.
256
251
.10.1109/JESTPE.2019.2953102
4.
Jaya Krishna
,
D.
,
2018
, “
Operational Time and Melt Fraction Based Optimization of a Phase Change Material Longitudinal Fin Heat Sink
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
064502
.10.1115/1.4040988
5.
Sahoo
,
S. K.
,
Das
,
M. K.
, and
Rath
,
P.
,
2018
, “
Hybrid Cooling System for Electronics Equipment During Power Surge Operation
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
8
(
3
), pp.
416
426
.10.1109/TCPMT.2017.2756919
6.
Jaguemont
,
J.
,
Karimi
,
D.
, and
Van Mierlo
,
J.
,
2019
, “
Investigation of a Passive Thermal Management System for Lithium-Ion Capacitors
,”
IEEE Trans. Veh. Technol.
,
68
(
11
), pp.
10518
10524
.10.1109/TVT.2019.2939632
7.
Barnes
,
D.
, and
Li
,
X.
,
2020
, “
Battery Thermal Management Using Phase Change Material-Metal Foam Composite Materials at Various Environmental Temperatures
,”
J. Electrochem. Energy Convers. Storage
,
17
(
2
), p. 021106.10.1115/1.4045326
8.
Xie
,
B.
,
Cheng
,
W.
, and
Xu
,
Z.
,
2015
, “
Studies on the Effect of Shape-Stabilized PCM Filled Aluminum Honeycomb Composite Material on Thermal Control
,”
Int. J. Heat Mass Transfer
,
91
, pp.
135
143
.10.1016/j.ijheatmasstransfer.2015.07.108
9.
Babapoor
,
A.
,
Azizi
,
M.
, and
Karimi
,
G.
,
2015
, “
Thermal Management of a Li-Ion Battery Using Carbon Fiber-PCM Composites
,”
Appl. Therm. Eng.
,
82
, pp.
281
290
.10.1016/j.applthermaleng.2015.02.068
10.
Lin
,
Y.
,
Jia
,
Y.
,
Alva
,
G.
, and
Fang
,
G.
,
2018
, “
Review on Thermal Conductivity Enhancement, Thermal Properties and Applications of Phase Change Materials in Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
2730
2742
.10.1016/j.rser.2017.10.002
11.
Tao
,
Y. B.
,
Lin
,
C. H.
, and
He
,
Y. L.
,
2015
, “
Preparation and Thermal Properties Characterization of Carbonatesalt/Carbon Nanomaterial Composite Phase Change Material
,”
Energy Convers. Manage.
,
97
, pp.
103
110
.10.1016/j.enconman.2015.03.051
12.
Nomura
,
T.
,
Tabuchi
,
K.
,
Zhu
,
C.
,
Sheng
,
N.
,
Wang
,
S.
, and
Akiyama
,
T.
,
2015
, “
High Thermal Conductivity Phase Change Composite With Percolating Carbon Fiber Network
,”
Appl. Energy
,
154
, pp.
678
685
.10.1016/j.apenergy.2015.05.042
13.
Xu
,
T.
,
Chen
,
Q.
,
Huang
,
G.
,
Zhang
,
Z.
,
Gao
,
X.
, and
Lu
,
S.
,
2016
, “
Preparation and Thermal Energy Storage Properties of D-Mannitol/Expanded Graphite Composite Phase Change Material
,”
Sol. Energy Mater. Sol. Cells
,
155
, pp.
141
146
.10.1016/j.solmat.2016.06.003
14.
Li
,
M.
,
2013
, “
A Nano-Graphite/Paraffin Phase Change Material With High Thermal Conductivity
,”
Appl. Energy
,
106
, pp.
25
30
.10.1016/j.apenergy.2013.01.031
15.
Oya
,
T.
,
Nomura
,
T.
,
Tsubota
,
M.
,
Okinaka
,
N.
, and
Akiyama
,
T.
,
2013
, “
Thermal Conductivity Enhancement of Erythritol as PCM by Using Graphite and Nickel Particles
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
825
828
.10.1016/j.applthermaleng.2012.05.033
16.
Al Ghossein
,
R. M.
,
Hossain
,
M. S.
, and
Khodadadi
,
J. M.
,
2017
, “
Experimental Determination of Temperature-Dependent Thermal Conductivity of Solid Eicosane-Based Silver Nanostructure-Enhanced Phase Change Materials for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
107
, pp.
697
711
.10.1016/j.ijheatmasstransfer.2016.11.059
17.
Liu
,
X.
,
Marbut
,
C.
,
Huitink
,
D.
,
Feng
,
G.
, and
Fleischer
,
A. S.
,
2019
, “
Influence of Crystalline Polymorphism on the Phase Change Properties of Sorbitol-Au Nanocomposites
,”
Mater. Today Energy
,
12
, pp.
379
388
.10.1016/j.mtener.2019.03.007
18.
Şahan
,
N.
,
Fois
,
M.
, and
Paksoy
,
H.
,
2015
, “
Improving Thermal Conductivity Phase Change Materials—A Study of Paraffin Nanomagnetite Composites
,”
Sol. Energy Mater. Sol. Cells
,
137
, pp.
61
67
.10.1016/j.solmat.2015.01.027
19.
Nourani
,
M.
,
Hamdami
,
N.
,
Keramat
,
J.
,
Moheb
,
A.
, and
Shahedi
,
M.
,
2016
, “
Thermal Behavior of Paraffin-Nano-Al2O3 Stabilized by Sodium Stearoyl Lactylate as a Stable Phase Change Material With High Thermal Conductivity
,”
Renewable Energy
,
88
, pp.
474
482
.10.1016/j.renene.2015.11.043
20.
Gonzalez-Nino
,
D.
,
Boteler
,
L. M.
,
Ibitayo
,
D.
,
Jankowski
,
N. R.
,
Urciuoli
,
D.
,
Kierzewski
,
I. M.
, and
Quintero
,
P. O.
,
2018
, “
Experimental Evaluation of Metallic Phase Change Materials for Thermal Transient Mitigation
,”
Int. J. Heat Mass Transfer
,
116
, pp.
512
519
.10.1016/j.ijheatmasstransfer.2017.09.039
21.
Soupremanien
,
U.
,
Szambolics
,
H.
, and
Quenard
,
S.
, May
2016
, “
Integration of Metallic Phase Change Material in Power Electronics
,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 31–June 3, pp. 125–133.10.1109/ITHERM.2016.7517539
22.
Shao
,
L.
,
Raghavan
,
A.
,
Kim
,
G.-H.
,
Emurian
,
L.
,
Rosen
,
J.
,
Papaefthymiou
,
M. C.
,
Wenisch
,
T. F.
,
Martin
,
M. M. K.
, and
Pipe
,
K. P.
,
2016
, “
Figure-of-Merit for Phase-Change Materials Used in Thermal Management
,”
Int. J. Heat Mass Transfer
,
101
, pp.
764
771
.10.1016/j.ijheatmasstransfer.2016.05.040
23.
Shamberger
,
P. J.
,
2016
, “
Cooling Capacity Figure of Merit for Phase Change Materials
,”
ASME J. Heat Transfer
,
138
(
2
), p. 024502.10.1115/1.4031252
24.
Mandal
,
M.
,
Kundu
,
S.
,
Ghosh
,
S. K.
,
Panigrahi
,
S.
,
Sau
,
T. K.
,
Yusuf
,
S. M.
, and
Pal
,
T.
,
2005
, “
Magnetite Nanoparticles With Tunable Gold or Silver Shell
,”
J. Colloid Interface Sci.
,
286
(
1
), pp.
187
194
.10.1016/j.jcis.2005.01.013
25.
Hariani
,
P. L.
,
Faizal
,
M.
,
Ridwan
,
R.
,
Marsi
,
M.
, and
Setiabudidaya
,
D.
,
2013
, “
Synthesis and Properties of Fe3O4 Nanoparticles by Co-Precipitation Method to Removal Procion Dye
,”
Int. J. Environ. Sci. Dev.
,
4
(
3
), pp.
336
340
.10.7763/IJESD.2013.V4.366
26.
Turkevich
,
J.
,
Cooper Stevenson
,
P.
, and
Hillier
,
J.
,
1951
, “
A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold
,”
Discuss. Faraday Soc.
,
11
, pp.
55
75
.10.1039/df9511100055
27.
ASTM D5470-17
, 2017, “Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials,”
ASTM International
, West Conshohocken, PA.10.1520/D5470-17
28.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford, UK
.
29.
Veerakumar
,
C.
, and
Sreekumar
,
A.
,
2016
, “
Phase Change Material Based Cold Thermal Energy Storage: Materials, Techniques and Applications—A Review
,”
Int. J. Refrig.
,
67
, pp.
271
289
.10.1016/j.ijrefrig.2015.12.005
30.
Babaei
,
H.
,
Keblinski
,
P.
, and
Khodadadi
,
J. M.
,
2013
, “
Thermal Conductivity Enhancement of Paraffins by Increasing the Alignment of Molecules Through Adding CNT/Graphene
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
209
216
.10.1016/j.ijheatmasstransfer.2012.11.013
31.
Huang
,
C.
,
Qian
,
X.
, and
Yang
,
R.
,
2018
, “
Thermal Conductivity of Polymers and Polymer Nanocomposites
,”
Mater. Sci. Eng., R
,
132
, pp.
1
22
.10.1016/j.mser.2018.06.002
32.
Deshpande
,
A.
,
Luo
,
F.
, and
Iradukunda
,
A.
,
2019
, “
Stacked DBC Cavitied Substrate for a 15-kV Half-Bridge Power Module
,” IEEE International Workshop on Integrated Power Packaging (
IWIPP
), Toulouse, France, Apr. 24–26, pp.
12
17
.10.1109/IWIPP.2019.8799077
33.
Deckard
,
M.
,
Shamberger
,
P.
, and
Fish
,
M.
, May
2019
, “
Convergence and Validation in ParaPower: A Design Tool for Phase Change Materials in Electronics Packaging
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
878
885
.10.1109/ITHERM.2019.8757334
34.
Github
,
2019
, “U.S. Army Research Lab, ParaPower,” Github, Washington, DC, accessed Dec. 19, 2019, https://Github.Com/USArmyResearchLab/ParaPower
35.
Liu
,
Z.
,
Peng
,
W.
,
Zare
,
Y.
,
Hui
,
D.
, and
Rhee
,
K. Y.
,
2018
, “
Predicting the Electrical Conductivity in Polymer Carbon Nanotube Nanocomposites Based on the Volume Fractions and Resistances of the Nanoparticle, Interphase, and Tunneling Regions in Conductive Networks
,”
RSC Adv.
,
8
(
34
), pp.
19001
19010
.10.1039/C8RA00811F
36.
Wu
,
S.
,
Zhu
,
D.
,
Zhang
,
X.
, and
Huang
,
J.
,
2010
, “
Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM)
,”
Energy Fuels
,
24
(
3
), pp.
1894
1898
.10.1021/ef9013967
37.
Chen
,
Y.
,
Luo
,
W.
,
Wang
,
J.
, and
Huang
,
J.
,
2017
, “
Enhanced Thermal Conductivity and Durability of a Paraffin Wax Nanocomposite Based on Carbon-Coated Aluminum Nanoparticles
,”
J. Phys. Chem. C
,
121
(
23
), pp.
12603
12609
.10.1021/acs.jpcc.7b02651
You do not currently have access to this content.