Abstract

As the heat generation at device footprint continuously increases in modern high-tech electronics, there is an urgent need to develop new cooling devices that balance the increasing power demands. To meet this need, cutting-edge cooling devices often utilize microscale structures that facilitate two-phase heat transfer. However, it has been difficult to understand how microstructures enhance evaporation performances through traditional experimental methods due to low spatial resolution. The previous methods can only provide coarse interpretations on how physical properties such as permeability, thermal conduction, and effective surface areas interact at the microscale to effectively dissipate heat. This motivates researchers to develop new methods to observe and analyze local evaporation phenomena at the microscale. Herein, we present techniques to characterize submicron to macroscale evaporative phenomena of microscale structures by using microlaser-induced fluorescence (μLIF). We corroborate the use of unsealed temperature-sensitive dyes by systematically investigating the effects of temperature, concentration, and liquid thickness on the fluorescence intensity. Considering these factors, we analyze the evaporative performances of microstructures using two approaches. The first approach characterizes the overall and local evaporation rates by measuring the solution drying time. The second approach employs an intensity-to-temperature calibration curve to convert temperature-sensitive fluorescence signals to surface temperatures, which calculates the submicron-level evaporation rates. Using these methods, we reveal that the local evaporation rate between microstructures is high but is balanced with a large capillary-feeding. This study will enable engineers to decompose the key thermofluidic parameters contributing to the evaporative performance of microscale structures.

References

1.
Pop
,
E.
,
2010
, “
Energy Dissipation and Transport in Nanoscale Devices
,”
Nano Res.
,
3
(
3
), pp.
147
169
.10.1007/s12274-010-1019-z
2.
Faghri
,
A.
,
2012
, “
Review and Advances in Heat Pipe Science and Technology
,”
ASME J. Heat Transfer
,
134
(
12
), p.
123001
.10.1115/1.4007407
3.
Launay
,
S.
,
Sartre
,
V.
, and
Bonjour
,
J.
,
2007
, “
Parametric Analysis of Loop Heat Pipe Operation: A Literature Review
,”
Int. J. Therm. Sci.
,
46
(
7
), pp.
621
636
.10.1016/j.ijthermalsci.2006.11.007
4.
Yeh
,
C. C.
,
Chen
,
C. N.
, and
Chen
,
Y. M.
,
2009
, “
Heat Transfer Analysis of a Loop Heat Pipe With Biporous Wicks
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4426
4434
.10.1016/j.ijheatmasstransfer.2009.03.059
5.
Weisenseel
,
B.
,
Greil
,
P.
, and
Fey
,
T.
,
2017
, “
Biomorphous Silicon Carbide as Novel Loop Heat Pipe Wicks
,”
Adv. Eng. Mater.
19
(
1
), p.
1600379
.10.1002/adem.201600379
6.
Huminic
,
G.
,
Huminic
,
A.
,
Morjan
,
I.
, and
Dumitrache
,
F.
,
2011
, “
Experimental Study of the Thermal Performance of Thermosyphon Heat Pipe Using Iron Oxide Nanoparticles
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
656
661
.10.1016/j.ijheatmasstransfer.2010.09.005
7.
de Bock
,
H. P. J.
,
Varanasi
,
K.
,
Chamarthy
,
P.
,
Deng
,
T.
,
Kulkarni
,
A.
,
Rush
,
B. M.
,
Russ
,
B. A.
,
Weaver
,
S. E.
, and
Gerner
,
F. M.
,
2009
, “
Experimental Investigation of Micro/Nano Heat Pipe Wick Structures
,”
IMECE 2008: Heat Transfer, Fluid Flows, and Thermal Systems
, Vol. 10, Boston, MA, Oct. 31–Nov. 6, pp. 991–996,
ASME
Paper No. IMEC2008-67288.10.1115/IMECE2008-67288
8.
De Bock
,
H. P. J.
,
2013
, “
Design and Experimental Validation of a Micro-Nano Structured Thermal Ground Plane for High-g Environments
,”
Ph.D. dissertation
, University of Cincinnati, Cincinnati, OH.http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367937275
9.
Lee
,
J.
,
Suh
,
Y.
,
Dubey
,
P. P.
,
Barako
,
M. T.
, and
Won
,
Y.
,
2019
, “
Capillary Wicking in Hierarchically Textured Copper Nanowire Arrays
,”
ACS Appl. Mater. Inter.
,
11
(
1
), pp.
1546
1554
.10.1021/acsami.8b14955
10.
Bodla
,
K. K.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2013
, “
Advances in Fluid and Thermal Transport Property Analysis and Design of Sintered Porous Wick Microstructures
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061202
.10.1115/1.4023569
11.
Kandlikar
,
S. G.
,
2017
, “
Enhanced Macroconvection Mechanism With Separate Liquid-Vapor Pathways to Improve Pool Boiling Performance
,”
ASME J. Heat Transfer
,
139
(
5
), p.
051501
.10.1115/1.4035247
12.
Li
,
T.
, and
Peterson
,
G. P.
,
2006
, “
Evaporation/Boiling in Thin Capillary Wicks (II)—Effects of Volumetric Porosity and Mesh Size
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1320
1328
.10.1115/1.2349508
13.
Ranjan
,
R.
,
Murthy
,
J. Y.
,
Garimella
,
S. V.
, and
Vadakkan
,
U.
,
2011
, “
A Numerical Model for Transport in Flat Heat Pipes Considering Wick Microstructure Effects
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
153
168
.10.1016/j.ijheatmasstransfer.2010.09.057
14.
Girard
,
F.
,
Antoni
,
M.
, and
Sefiane
,
K.
,
2010
, “
Infrared Thermography Investigation of an Evaporating Sessile Water Droplet on Heated Substrates
,”
Langmuir
,
26
(
7
), pp.
4576
4580
.10.1021/la9048659
15.
Hohmann
,
C.
, and
Stephan
,
P.
,
2002
, “
Microscale Temperature Measurement at an Evaporating Liquid Meniscus
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
157
162
.10.1016/S0894-1777(02)00122-X
16.
Buffone
,
C.
, and
Sefiane
,
K.
,
2005
, “
Temperature Measurement Near the Triple Line During Phase Change Using Thermochromic Liquid Crystal Thermography
,”
Exp. Fluids
,
39
(
1
), pp.
99
110
.10.1007/s00348-005-0986-4
17.
Pan
,
Z. H.
,
Dash
,
S.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2013
, “
Assessment of Water Droplet Evaporation Mechanisms on Hydrophobic and Superhydrophobic Substrates
,”
Langmuir
,
29
(
51
), pp.
15831
15841
.10.1021/la4045286
18.
Feng
,
J.
,
Tian
,
K. J.
,
Hu
,
D. H.
,
Wang
,
S. Q.
,
Li
,
S. Y.
,
Zeng
,
Y.
,
Li
,
Y.
, and
Yang
,
G. Q.
,
2011
, “
A Triarylboron-Based Fluorescent Thermometer: Sensitive Over a Wide Temperature Range
,”
Angew. Chem. Int. Ed.
,
50
(
35
), pp.
8072
8076
.10.1002/anie.201102390
19.
Mishan
,
Y.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Hetsroni
,
G.
,
2007
, “
Effect of Developing Flow and Thermal Regime on Momentum and Heat Transfer in Micro-Scale Heat Sink
,”
Int. J. Heat Mass. Transfer
,
50
(
15–16
), pp.
3100
3114
.10.1016/j.ijheatmasstransfer.2006.12.003
20.
Carlomagno
,
G. M.
, and
Cardone
,
G.
,
2010
, “
Infrared Thermography for Convective Heat Transfer Measurements
,”
Exp. Fluids
,
49
(
6
), pp.
1187
1218
.10.1007/s00348-010-0912-2
21.
Christofferson
,
J.
,
Maize
,
K.
,
Ezzahri
,
Y.
,
Shabani
,
J.
,
Wang
,
X.
, and
Shakouri
,
A.
,
2007
, “
Microscale and Nanoscale Thermal Characterization Techniques
,”
International Conference on Thermal Issues in Emerging Technologies—Theory and Applications
, Cairo, Egypt, Jan. 3–6, p.
3
+.10.1109/THETA.2007.363399
22.
Dhavaleswarapu
,
H. K.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2009
, “
Microscale Temperature Measurements Near the Triple Line of an Evaporating Thin Liquid Film
,”
ASME J. Heat Transfer
,
131
(
6
), p.
061501
.10.1115/1.3090525
23.
Low
,
P.
,
Kim
,
B.
,
Takama
,
N.
, and
Bergaud
,
C.
,
2008
, “
High-Spatial-Resolution Surface-Temperature Mapping Using Fluorescent Thermometry
,”
Small
,
4
(
7
), pp.
908
914
.10.1002/smll.200700581
24.
Kenning
,
D. B. R.
, and
Yan
,
Y. Y.
,
1996
, “
Pool Boiling Heat Transfer on a Thin Plate: Features Revealed by Liquid Crystal Thermography
,”
Int. J. Heat Mass Transfer
,
39
(
15
), pp.
3117
3137
.10.1016/0017-9310(96)00006-3
25.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.10.1088/0957-0233/11/7/312
26.
Brites
,
C. D. S.
,
Lima
,
P. P.
,
Silva
,
N. J. O.
,
Millan
,
A.
,
Amaral
,
V. S.
,
Palacio
,
F.
, and
Carlos
,
L. D.
,
2012
, “
Thermometry at the Nanoscale
,”
Nanoscale
,
4
(
16
), pp.
4799
4829
.10.1039/c2nr30663h
27.
Tovee
,
P. D.
, and
Kolosov
,
O. V.
,
2013
, “
Mapping Nanoscale Thermal Transfer in-Liquid Environment-Immersion Scanning Thermal Microscopy
,”
Nanotechnology
,
24
(
46
), p.
465706
.10.1088/0957-4484/24/46/465706
28.
Assy
,
A.
, and
Gomes
,
S.
,
2015
, “
Temperature-Dependent Capillary Forces at Nano-Contacts for Estimating the Heat Conduction Through a Water Meniscus
,”
Nanotechnology
,
26
(
35
), p.
355401
.10.1088/0957-4484/26/35/355401
29.
Wilson
,
A. A.
, and
Sharar
,
D. J.
,
2018
, “
Temperature-Dependent Adhesion Mechanisms of Metal and Insulator Probe-Sample Contact Pairs
,”
Intersociety Conference on Thermal Phenomena in Electronic Systems
, San Diego, CA, May 29–June 1, pp.
240
245
.10.1109/ITHERM.2018.8419657
30.
Martinek
,
J.
,
Klapetek
,
P.
, and
Campbell
,
A. C.
,
2015
, “
Methods for Topography Artifacts Compensation in Scanning Thermal Microscopy
,”
Ultramicroscopy
,
155
, pp.
55
61
.10.1016/j.ultramic.2015.04.011
31.
Menges
,
F.
,
Mensch
,
P.
,
Schmid
,
H.
,
Riel
,
H.
,
Stemmer
,
A.
, and
Gotsmann
,
B.
,
2016
, “
Temperature Mapping of Operating Nanoscale Devices by Scanning Probe Thermometry
,”
Nat. Commun.
,
7
(
1
), pp.
1
6
.10.1038/ncomms10874
32.
Rochlitz
,
H.
, and
Scholz
,
P.
,
2018
, “
Application of Laser-Induced Fluorescence Technique in a Duct Flow With One Heated Wall
,”
Exp. Fluids
,
59
(
3
), p.
54
.10.1007/s00348-018-2508-1
33.
Volkov
,
R. S.
, and
Strizhak
,
P. A.
,
2017
, “
Planar Laser-Induced Fluorescence Diagnostics of Water Droplets Heating and Evaporation at High-Temperature
,”
Appl. Therm. Eng.
,
127
, pp.
141
156
.10.1016/j.applthermaleng.2017.08.040
34.
Chaze
,
W.
,
Caballina
,
O.
,
Castanet
,
G.
, and
Lemoine
,
F.
,
2017
, “
Spatially and Temporally Resolved Measurements of the Temperature Inside Droplets Impinging on a Hot Solid Surface
,”
Exp. Fluids
,
58
(
8
), p.
9
.10.1007/s00348-017-2375-1
35.
Feng
,
J.
,
Xiong
,
L.
,
Wang
,
S. Q.
,
Li
,
S. Y.
,
Li
,
Y.
, and
Yang
,
G. Q.
,
2013
, “
Fluorescent Temperature Sensing Using Triarylboron Compounds and Microcapsules for Detection of a Wide Temperature Range on the Micro- and Macroscale
,”
Adv. Funct. Mater.
,
23
(
3
), pp.
340
345
.10.1002/adfm.201201712
36.
Erickson
,
D.
,
Sinton
,
D.
, and
Li
,
D. Q.
,
2003
, “
Joule Heating and Heat Transfer in Poly(Dimethylsiloxane) Microfluidic Systems
,”
Lab Chip
,
3
(
3
), pp.
141
149
.10.1039/b306158b
37.
Samy
,
R.
,
Glawdel
,
T.
, and
Ren
,
C. L.
,
2008
, “
Method for Microfluidic Whole-Chip Temperature Measurement Using Thin-Film Poly(Dimethylsiloxane)/Rhodamine B
,”
Anal. Chem.
,
80
(
2
), pp.
369
375
.10.1021/ac071268c
38.
Glawdel
,
T.
,
Almutairi
,
Z.
,
Wang
,
S.
, and
Ren
,
C.
,
2009
, “
Photobleaching Absorbed Rhodamine B to Improve Temperature Measurements in PDMS Microchannels
,”
Lab Chip
,
9
(
1
), pp.
171
174
.10.1039/B805172K
39.
Ross
,
D.
,
Gaitan
,
M.
, and
Locascio
,
L. E.
,
2001
, “
Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye
,”
Anal. Chem.
,
73
(
17
), pp.
4117
4123
.10.1021/ac010370l
40.
Vetrone
,
F.
,
Naccache
,
R.
,
Zamarrón
,
A.
,
Juarranz de la Fuente
,
A.
,
Sanz-Rodríguez
,
F.
,
Martinez Maestro
,
L.
,
Martín Rodriguez
,
E.
,
Jaque
,
D.
,
García Solé
,
J.
, and
Capobianco
,
J. A.
,
2010
, “
Temperature Sensing Using Fluorescent Nanothermometers
,”
ACS Nano
,
4
(
6
), pp.
3254
3258
.10.1021/nn100244a
41.
Sakakibara
,
J.
,
Hishida
,
K.
, and
Maeda
,
M.
,
1993
, “
Measurements of Thermally Stratified Pipe-Flow Using Image-Processing Techniques
,”
Exp. Fluids
,
16
(
2
), pp.
82
96
.10.1007/BF00944910
42.
Fikry
,
M.
,
Omar
,
M. M.
, and
Ismail
,
L. Z.
,
2011
, “
Effect of Host Medium on the Fluorescence Emission Intensity of Rhodamine B in Liquid and Solid Phase
,”
Modern Trends in Physics Research: Third International Conference on Modern Trends in Physics Research
, Cairo, Egypt, Apr. 6–10, pp.
210
219
.10.1007/s10895-009-0470-2
43.
Greszik
,
D.
,
Yang
,
H.
,
Dreier
,
T.
, and
Schulz
,
C.
,
2011
, “
Measurement of Water Film Thickness by Laser-Induced Fluorescence and Raman Imaging
,”
Appl. Phys. B-Lasers O
,
102
(
1
), pp.
123
132
.10.1007/s00340-010-4200-x
44.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2007
, “
Characteristics of an Evaporating Thin Film in a Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3933
3942
.10.1016/j.ijheatmasstransfer.2007.01.052
45.
Bodla
,
K. K.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2013
, “
Evaporation Analysis in Sintered Wick Microstructures
,”
Int. J. Heat Mass Transfer
,
61
, pp.
729
741
.10.1016/j.ijheatmasstransfer.2013.02.038
46.
Montazeri
,
K.
,
Lee
,
H.
, and
Won
,
Y.
,
2018
, “
Microscopic Analysis of Thin-Film Evaporation on Spherical Pore Surfaces
,”
Int. J. Heat Mass Transfer
,
122
, pp.
59
68
.10.1016/j.ijheatmasstransfer.2018.01.002
47.
Ranjan
,
R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2009
, “
Analysis of the Wicking and Thin-Film Evaporation Characteristics of Microstructures
,”
ASME J. Heat Transfer
,
131
(
10
), p.
101001
.10.1115/1.3160538
You do not currently have access to this content.