Abstract

The increasing demand for tightly integrated gallium nitride high electron mobility transistors (HEMT) into electronics systems requires accurate thermal evaluation. While these devices exhibit favorable electrical characteristics, the performance and reliability suffer from elevated operating temperatures. Localized device self-heating, with peak channel and die level heat fluxes of the order of 1 MW cm−2 and 1 kW cm−2, respectively, presents a need for thermal management that is reliant on accurate channel temperature predictions. In this publication, a high-fidelity multiphysics modeling approach employing one-way electrothermal coupling is validated against experimental results from Raman thermometry of a 60-finger gallium nitride (GaN) HEMT power amplifier under a set of direct current (DC)-bias conditions. A survey of commonly assumed reduced-order approximations, in the form of numerical and analytical models, are systematically evaluated with comparisons to the peak channel temperature rise of the coupled multiphysics model. Recommendations of modeling assumptions are made relating to heat generation, material properties, and composite layer discretization for numerical and analytical models. The importance of electrothermal coupling is emphasized given the structural and bias condition effect on the heat generation profile. Discretization of the composite layers, with temperature-dependent thermal properties that are physically representative, are also recommended.

References

1.
Ambacher
,
O.
,
Foutz
,
B.
,
Smart
,
J.
,
Shealy
,
J. R.
,
Weimann
,
N. G.
,
Chu
,
K.
,
Murphy
,
M.
,
Sierakowski
,
A. J.
,
Schaff
,
W. J.
,
Eastman
,
L. F.
,
Dimitrov
,
R.
,
Mitchell
,
A.
, and
Stutzmann
,
M.
,
2000
, “
Two Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization in Undoped and Doped AlGaN/GaN Heterostructures
,”
J. Appl. Phys.
,
87
(
1
), pp.
334
344
.10.1063/1.371866
2.
Ditri
,
J.
,
Pearson
,
R. R.
,
Cadotte
,
R.
,
Hahn
,
J. W.
,
Fetterolf
,
D.
,
McNulty
,
M.
, and
Luppa
,
D.
,
2016
, “
GaN Unleashed: The Benefits of Microfluidic Cooling
,”
IEEE Trans. Semicond. Manuf.
,
29
(
4
), pp.
376
383
.10.1109/TSM.2016.2597363
3.
Bar Cohen
,
A.
,
Maurer
,
J. J.
, and
Felbinger
,
J. G.
,
2013
, “
DARPA's Intra/Interchip Enhanced Cooling (ICECool) Program
,”
CS Mantech
,
New Orleans, LA
.
4.
Choi
,
S.
,
Heller
,
E.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
Thermometry of AlGaN/GaN HEMTs Using Multispectral Raman Features
,”
IEEE Trans. Electron. Devices
,
60
(
6
), pp.
1898
1904
.10.1109/TED.2013.2255102
5.
Green
,
D. S.
,
Brown
,
J. D.
,
Vetury
,
R.
,
Lee
,
S.
,
Gibb
,
S. R.
,
Krishnamurthy
,
M.
,
Poulton
,
M. J.
,
Martin
,
J.
, and
Shealy
,
J. B.
,
2008
, “
Status of GaN HEMT Performance
,”
Proc. SPIE 6894
,
Gallium Nitride Materials and Devices III
, Vol.
6894
.10.1117/12.763781
6.
Heller
,
E. R.
, and
Crespo
,
A.
,
2008
, “
Electro-Thermal Modeling of Multifinger AlGaN/GaN HEMT Device Operation Including Thermal Substrate Effects
,”
Microelectron. Reliab.
,
48
(
1
), pp.
45
50
.10.1016/j.microrel.2007.01.090
7.
Darwish
,
A. M.
,
Bayba
,
A. J.
, and
Hung
,
H. A.
,
2005
, “
Accurate Determination of Thermal Resistance of FETs
,”
IEEE Trans. Microwave Theory Tech.
,
53
(
1
), pp.
306
313
.10.1109/TMTT.2004.839916
8.
Darwish
,
A.
,
Bayba
,
A. J.
, and
Hung
,
H. A.
,
2015
, “
Channel Temperature Analysis of GaN HEMTs
,”
IEEE Trans. Electron. Devices
,
62
(
3
), pp.
840
846
.10.1109/TED.2015.2396035
9.
Ditri
,
J.
,
2007
, “
Heat Conduction in Microwave Devices With Orthotropic and Temperature-Dependent Thermal Conductivity
,”
IEEE Trans. Microwave Theory Tech.
,
55
(
3
), pp.
555
560
.10.1109/TMTT.2006.890526
10.
Freeman
,
J. C.
,
2004
, “
Channel Temperature Model for Microwave AlGaN/GaN HEMTs on SiC and Sapphire MMICs in High Power, High Efficiency SSPAs
,”
Glenn Research Center
,
Cleveland, Ohio
, Report No. Nasa/TM-2004-212900.
11.
Bagnall
,
K. R.
,
Muzychka
,
Y. S.
, and
Wang
,
E.
,
2014
, “
Application of the Kirchhoff Transform to Thermal Spreading Problems With Convection Boundary Conditions
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
4
(
3
), pp.
408
420
.10.1109/TCPMT.2013.2292584
12.
Bagnall
,
K. R.
,
Saadat
,
O. I.
,
Palacios
,
T.
, and
Wang
,
E. N.
,
2014
, “
Analytical Thermal Model for HEMTs With Complex Epitaxial Structures
,”
14th IEEE ITHERM Conference
,
Orlando, FL
, May 27–30, pp.
947
958
.10.1109/ITHERM.2014.6892384
13.
Kuball
,
M.
,
Rajasingam
,
S.
,
Sarua
,
A.
,
Uren
,
M. J.
,
Martin
,
T.
,
Hughes
,
B. T.
,
Hilton
,
K. P.
, and
Balmer
,
R. S.
,
2003
, “
Measurement of Temperature Distribution in Multifinger AlGaN/GaN Heterostructure
,”
Appl. Phys. Lett.
,
82
(
1
), pp.
124
126
.10.1063/1.1534935
14.
Killat
,
N.
,
Montes
,
M.
,
Pomeroy
,
J. W.
,
Paskova
,
T.
,
Evans
,
K. R.
,
Leach
,
J.
,
Li
,
X.
,
Ozgur
,
U.
,
Morkoc
,
H.
,
Chabak
,
K. D.
,
Crespo
,
A.
,
Gillespie
,
J. K.
,
Fitch
,
R.
,
Kossler
,
M.
,
Walker
,
D. E.
,
Trejo
,
M.
,
Via
,
G. D.
,
Blevins
,
J. D.
, and
Kuball
,
M.
,
2012
, “
Thermal Properties of AlGaN/GaN HFETs on Bulk GaN Substrates
,”
IEEE Electron. Device Lett.
,
33
(
3
), pp.
366
368
.10.1109/LED.2011.2179972
15.
Killat
,
N.
,
Pomeroy
,
J. W.
,
Jimenez
,
J.
, and
Kuball
,
M.
,
2014
, “
Thermal Properties of AlGaN/GaN High on Electron Mobility Transistors on 4H and 6H SiC Substrates
,”
Phys. Status Solidi A
,
12
, pp.
2844
2847
.10.1002/pssa.201431440
16.
Manoi
,
A.
,
Pomeroy
,
J. W.
,
Killat
,
N.
, and
Kuball
,
M.
,
2010
, “
Benchmarking the Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure
,”
IEEE Electron. Device Lett.
,
31
(
12
), pp.
1395
1397
.10.1109/LED.2010.2077730
17.
Heller
,
E. R.
,
Vetury
,
R.
, and
Green
,
D. S.
,
2011
, “
Development of a Versatile Physics-Based Finite-Element Model of an AlGaN/GaN HEMT Capable of Accommodating Process and Epitaxy Variations and Calibrated Using Multiple DC Parameters
,”
IEEE Trans. Electron. Devices
,
58
(
4
), pp.
1091
1095
.10.1109/TED.2011.2107913
18.
Choi
,
S.
,
Heller
,
E. R.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
The Impact of Bias Conditions on Self-Heating
,”
IEEE Trans. Electron Devices
,
60
(
1
), pp.
159
162
.10.1109/TED.2012.2224115
19.
Heller
,
E.
,
Choi
,
S.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
Electrical and Structural Dependence of Operating Temperature on AlGaN/GaN HEMTs
,”
Microelectron. Reliab.
,
53
(
6
), pp.
872
877
.10.1016/j.microrel.2013.03.004
20.
Chatterjee
,
B.
,
Lundh
,
J.
,
Dallas
,
J.
,
Kim
,
H.
, and
Choi
,
S.
,
2017
, “
Electro-Thermal Reliability Study of GaN High Electron Mobility Transistors
,”
16th IEEE ITHERM Conference
, Orlando, FL, May 30–June 2, pp.
1247
1252
.10.1109/ITHERM.2017.7992627
21.
Beechem
,
T. E.
,
McDonald
,
A. E.
,
Fuller
,
E. J.
,
Talin
,
A. A.
,
Rost
,
C. M.
,
Maria
,
J.-P.
,
Gaskins
,
J. T.
,
Hopkins
,
P. E.
, and
Allerman
,
A. A.
,
2016
, “
Size Dictated Thermal Conductivity of GaN
,”
J. Appl. Phys.
,
120
(
9
), p.
095104
.10.1063/1.4962010
22.
Jones
,
J. P.
,
Rosenberger
,
M. R.
,
King
,
W. P.
,
Vetury
,
R.
,
Heller
,
E.
,
Dorsey
,
D.
, and
Graham
,
S.
,
2014
, “
Electro-Thermal-Mechanical Transient Modeling of Stress Development in AlGaN/GaN High Electron Mobility Transistors (HEMTs)
,”
14th IEEE ITHERM Conference
, Orlando, FL, May 27–30, pp.
959
965
.10.1109/ITHERM.2014.6892385
23.
Kim
,
S. H.
,
2014
, “
Addressing Thermal and Environmental Reliability in Gan Based High Electron Mobility Transistors
,”
M.S. thesis
, School of Mechanical Engineering, Georgia Institute of Technology,
Atlanta, GA
, p.
132
.http://hdl.handle.net/1853/52244
24.
Kuball
,
M.
,
Hayes
,
J. M.
,
Uren
,
M. J.
,
Martin
,
I.
,
Birbeck
,
J. C. H.
,
Balmer
,
R. S.
, and
Hughes
,
B. T.
,
2002
, “
Measurement of Temperature in Active High-Power AlGaN/GaN HFETs Using Raman Spectroscopy
,”
IEEE Electron. Device Lett.
,
23
(
1
), pp.
7
9
.10.1109/55.974795
25.
Beechem
,
T.
,
Christensen
,
A.
,
Graham
,
S.
, and
Green
,
D.
,
2008
, “
Micro-Raman Thermometry in the Presence of Complex Stresses in GaN Devices
,”
J. Appl. Phys.
,
103
(
12
), p.
124501
.10.1063/1.2940131
26.
COMSOL Multiphysics, 2020, “
COMSOL Multiphysics 5.3
,” COMSOL Inc, Burlington, MA, accessed Mar. 18, 2020, https://www.comsol.com/
27.
Synopsys, 2020, “
Synopsys Sentaurus Device
,” Synopsys Corporate, East Middlefield Road, Mountain View, CA, accessed Mar. 18, 2020, https://www.synopsys.com/silicon/tcad/device-simulation/sentaurus-device.html
28.
Romanov
,
A. E.
,
Stepanov
,
S. I.
,
Nikolaev
,
V. I.
, and
Bougrov
,
V. E.
,
2016
, “
Gallium Oxide: Properties and Applications- A Review
,”
Rev. Adv. Mater. Sci.
,
44
, pp.
63
86
.https://pdfs.semanticscholar.org/227c/d22af58a530db8fc4e4cc8cb74d85840cc0e.pdf
29.
Tsao
,
J. Y.
,
Chowdhury
,
S.
,
Hollis
,
M. A.
,
Jena
,
D.
,
Johnson
,
N. M.
,
Jones
,
K. A.
,
Kaplar
,
R. J.
,
Rajan
,
S.
,
Van de Walle
,
C. G.
,
Bellotti
,
E.
,
Chua
,
C. L.
,
Collazo
,
R.
,
Coltrin
,
M. E.
,
Cooper
,
J. A.
,
Evans
,
K. R.
,
Graham
,
S.
,
Grotjohn
,
T. A.
,
Heller
,
E. R.
,
Higashiwaki
,
M.
,
Islam
,
M. S.
,
Juodawlkis
,
P. W.
,
Khan
,
M. A.
,
Koehler
,
A. D.
,
Leach
,
J. H.
,
Mishra
,
U. K.
,
Nemanich
,
R. J.
,
Pilawa-Podgurski
,
R. C. N.
,
Shealy
,
J. B.
,
Sitar
,
Z.
,
Tadjer
,
M. J.
,
Witulski
,
A. F.
,
Wraback
,
M.
, and
Simmons
,
J. A.
,
2018
, “
Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges
,”
Adv. Electron. Mater.
,
4
(
1
), p.
1600501
.10.1002/aelm.201600501
30.
Higashiwaki
,
M.
,
Sasaki
,
K.
,
Murakami
,
H.
,
Kumagai
,
Y.
,
Koukitu
,
A.
,
Kuramata
,
A.
,
Masui
,
T.
, and
Yamakoshi
,
S.
,
2016
, “
Recent Progress in Ga2O3 Power Devices
,”
Semicond. Sci. Technol.
,
31
(
3
), p.
034001
.10.1088/0268-1242/31/3/034001
31.
Jung, K. W., Kharangate, C. R., Lee, H., Palko, J., Zhou, F., Asheghi, M., Dede, E. M., and Goodson, K. E.,
2017
, “
Microchannel Cooling Strategies for High Heat Flux (1 kW/cm2) Power Electronic Applications
,” 16th IEEE ITHERM, Orlando, FL, May 30–June 2, pp.
98
104
.10.1109/ITHERM.2017.7992457
32.
Ditri
,
J.
,
2009
, “
Efficient Fourier Series Solutions to Nonlinear Steady-State Heat Conduction Problems in Microwave Circuits
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
1
), pp.
110
119
.10.1109/TCAPT.2008.2002949
33.
Celik
,
I.
,
Ghia
,
U.
,
Roache
,
P.
,
Freitas
,
C.
,
Coleman
,
H.
, and
Raad
,
P.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
34.
Choi
,
S.
,
Heller
,
E.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
The Impact of Mechanical Stress on the Degradation of AlGaN/GaN High Electron Mobility Transistors
,”
J. Appl. Phys.
,
114
(
16
), p.
164501
.10.1063/1.4826524
35.
Garven
,
M.
, and
Calame
,
J. P.
,
2009
, “
Simulation and Optimization of Gate Temperatures in GaN-on-SiC Monolithic Microwave Integrated Circuits
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
1
), pp.
63
72
.10.1109/TCAPT.2008.2004586
36.
Russo
,
S.
,
d'Alessandro
,
V.
,
Costagliola
,
M.
,
Sasso
,
G.
, and
Rinaldi
,
N.
,
2012
, “
Analysis of the Thermal Behavior of AlGaN/GaN HEMTs
,”
Mater. Sci. Eng. B
,
177
(
15
), pp.
1343
1351
.10.1016/j.mseb.2012.03.024
37.
Chen
,
X.
,
Donmezer
,
F. N.
,
Kumar
,
S.
, and
Graham
,
S.
,
2014
, “
A Numerical Study on Comparing the Active and Passive Cooling of AlGaN/GaN HEMTs
,”
IEEE Trans. Electron. Devices
,
61
(
12
), pp.
4056
4061
.10.1109/TED.2014.2360504
38.
Won
,
Y.
,
Cho
,
J.
,
Agonafer
,
D.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2015
, “
Fundamental Cooling Limits for High Power Density Gallium Nitride Electronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
6
), pp.
737
744
.10.1109/TCPMT.2015.2433132
39.
Baczkowski
,
L.
,
Jacquet
,
J.-C.
,
Jardel
,
O.
,
Gaquiere
,
C.
,
Moreau
,
M.
,
Carisetti
,
D.
,
Brunel
,
L.
,
Vouzelaud
,
F.
, and
Mancuso
,
Y.
,
2015
, “
Thermal Characteriation Using Optical Methods of AlGaN/GaN HEMTS on SIC Substrate in RF Operating Conditions
,”
IEEE Trans. Electron. Devices
,
62
(
12
), pp.
3992
3998
.10.1109/TED.2015.2493204
40.
Calame
,
J. P.
,
Myers
,
R. E.
,
Wood
,
F. N.
, and
Binari
,
S. C.
,
2005
, “
Simulation of Direct-Die-Attached Microchannel Coolers for the Thermal Management of GaN-on-SiC Microwave Amplifiers
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
4
).10.1109/TCAPT.2005.848584
41.
Asheghi
,
M.
,
Kurabayashi
,
K.
,
Kasnavi
,
R.
, and
Goodson
,
K. E.
,
2002
, “
Thermal Conduction in Doped Single-Crystal Silicon Films
,”
J. Appl. Phys
,
91
(
8
), pp.
5079
5088
.10.1063/1.1458057
42.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
,
King
,
W. P.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Phillpot
,
S. R.
,
Pop
,
E.
, and
Shi
,
L.
,
2014
, “
Nanoscale Thermal Transport—II: 2003–2012
,”
Appl. Phys. Rev.
,
1
, p.
11305
.10.1063/1.4832615
43.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2002
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
, (
93
), pp.
793
818
.10.1063/1.1524305
44.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
7
16
.10.1115/1.2910673
45.
Pengelly
,
R. S.
,
Wood
,
S. M.
,
Milligan
,
J. W.
,
Sheppard
,
S. T.
, and
Pribble
,
W. L.
,
2012
, “
A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs
,”
IEEE Trans. Microwave Theory Tech.
,
60
(
6
), pp.
1764
1783
.10.1109/TMTT.2012.2187535
46.
Qorvo
,
2017
, “
A Primer on GaN and 3 Reasons It Outperforms Other Semiconductors in RF Applications
,” Qorvo, Greensboro, NC, accessed Sept. 4, 2019, https://www.qorvo.com/design-hub/blog/a-primer-on-gan-and-3-reasons-it-outperforms-other-semiconductors-in-rf-applications
47.
Zou
,
J.
,
Kotchetkov
,
D.
,
Balandin
,
A. A.
,
Florescu
,
D. I.
, and
Pollak
,
F. H.
,
2002
, “
Thermal Conductivity of GaN Films: Effects of Impurities and Dislocations
,”
J. Appl. Phys.
,
92
(
5
), pp.
2534
2539
.10.1063/1.1497704
48.
Florescu
,
D. I.
,
Asnin
,
V. M.
,
Pollak
,
F. H.
,
Molnar
,
R. J.
, and
Wood
,
C. E. C.
,
2000
, “
High Spatial Resolution Thermal Conductivity and Raman Spectroscopy Investigation of Hydride Vapor Phase Epitaxy Grown n-GaN/Sapphire (0001): Doping Dependence
,”
J. Appl. Phys.
,
88
(
6
), pp.
3295
3300
.10.1063/1.1289072
49.
Liu
,
W.
, and
Balandin
,
A. A.
,
2005
, “
Thermal Conduction in AlxGa1-xN Alloys and Thin Films
,”
J. Appl. Phys.
,
97
(
7
), p.
073710
.10.1063/1.1868876
50.
Yates
,
L.
, Pavlidis, G.,
Graham
,
S.
,
Usami
,
S.
,
Nagamatsu
,
K.
,
Honda
,
Y.
, and
Amano
,
H.
,
2018
, “
Electric and Thermal Analysis of Vertical GaN-on-GaN PN Diodes
,”
17th IEEE ITHERM Conference
, San Diego, CA, May 29–June 1, pp.
831
837
.10.1109/ITHERM.2018.8419481
51.
Ziade
,
E.
,
Yang
,
J.
,
Brummer
,
G.
,
Nothern
,
D.
,
Moustakas
,
T.
, and
Schmidt
,
A. J.
,
2017
, “
Thickness Dependent Thermal Conductivity of Gallium Nitride
,”
Appl. Phys. Lett.
,
110
(
3
), p.
031903
.10.1063/1.4974321
52.
Bougher
,
T. L.
,
Yates
,
L.
,
Lo
,
C.-F.
,
Johnson
,
W.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2016
, “
Thermal Boundary Resistance in GaN Films Measured by Time Domain Thermoreflectance With Robust Monte Carlo Uncertainty Estimation
,”
Nanoscale Microscale Thermophys. Eng.
,
20
(
1
), pp.
22
32
.10.1080/15567265.2016.1154630
53.
Sarua
,
A.
,
Ji
,
H.
,
Hilton
,
K. P.
,
Wallis
,
D. J.
,
Uren
,
M. J.
,
Martin
,
T.
, and
Kuball
,
M.
,
2007
, “
Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices
,”
IEEE Trans. Electron. Devices
,
54
(
12
), pp.
3152
3158
.10.1109/TED.2007.908874
54.
Burgemeister
,
E. A.
,
von Muench
,
W.
, and
Pettenpaul
,
E.
,
1979
, “
Thermal Conductivity and Electrical Properties of 6H Silicon Carbide
,”
J. Appl. Phys.
,
50
(
9
), pp.
5790
5794
.10.1063/1.326720
55.
Cutivet
,
A.
,
Pavlidis
,
G.
,
Hassan
,
B.
,
Bouchilaoun
,
M.
,
Rodriguez
,
C.
,
Soltani
,
A.
,
Graham
,
S.
,
Boone
,
F.
, and
Maher
,
H.
,
2019
, “
Scalable Modeling of Transient Self-Heating of GaN High-Electron-Mobility Transistors Based on Experimental Measurements
,”
IEEE Trans. Electron. Devices
,
66
(
5
), pp.
2139
2145
.10.1109/TED.2019.2906943
56.
Penn
,
J.
,
2012
, “
0.15-μm Gallium Nitride (GaN) Microwave Integrated Circuit Designs Submitted to TriQuint Semiconductor for Fabrication
,”
Army Research Laboratory
,
Adelphi, MD
,https://apps.dtic.mil/dtic/tr/fulltext/u2/a570172.pdf
57.
Qorvo, 2019,
Field-Proven GaN Solutions From Qorvo
,” Qorvo, Greensboro, NC, accessed Sept. 4, 2019, https://www.qorvo.com/resources/d/qorvo-field-proven-gan-solutions-brochure
58.
King
,
J. A.
,
1988
,
Material Handbook for Hybrid Microelectronics
, Artech House Publishers,
Norwood, MA
.
59.
Fabis
,
P. M.
,
1999
, “
Reliability of Radio Frequency/Microwave Power Packages: The Effects of Component Materials and Assembly Processes
,”
Microelenics Reliab.
,
39
(
8
), pp.
1265
1274
.10.1016/S0026-2714(99)00039-6
60.
MatWeb
, 2019, “
Oxygen-Free Electronic Copper, UNS C10100
,” MatWeb, accessed Sept. 4, 2019, http://www.matweb.com/search/datasheet.aspx? matguid=25cdd9bd3ebb4941be91cb0bee4cc661&ckck=1
61.
Warzoha
,
R. J.
,
Zhang
,
D.
,
Feng
,
G.
, and
Fleischer
,
A. S.
,
2013
, “
Engineering Interfaces in Carbon Nanostructured Mats for the Creation of Energy Efficient Thermal Interface Materials
,”
Carbon
,
61
(
61
), pp.
441
457
.10.1016/j.carbon.2013.05.028
62.
Dow Corning
,
2012
, “
TC-5622 Thermally Conductive Compound
,” Dow Corning, Midland, MI, accessed Sept. 4, 2019, https://ostec-materials.ru/upload/iblock/eb2/eb28647b48527b9aa87e9b36777414e0.pdf
63.
Indium Corporation
, 2019, “
Use of Heat-Spring (R) Material
,” Indium Corporation, Clinton, NY, accessed Sept. 4, 2019, https://documents.indium.com/qdynamo/download.php?docid=1882
You do not currently have access to this content.