Abstract

Wearable electronics undergo stretching, flexing, bending, and twisting during the process of being put on and while being worn. In addition, wearable textile electronics also need to survive under cyclic washing. During such processes, it is necessary to ensure that the electronics as well as the conductors and various other supporting materials remain reliable. In this work, mechanical characterization of various materials in a commercially available smart shirt is presented. The serpentine conductor used in the smart shirt has been carefully examined to understand the strain distribution at various locations under stretching. Both analytical formulations and numerical simulations have been carried out to determine the strain distribution in the serpentine structure, and the results from the simulations have been compared against experimental data obtained through two-dimensional digital image correlation (2D DIC). Various design configurations of the semicircular serpentine structure have been studied in this work, and a relationship between width and the neutral line radius of the semicircular serpentine structure has been obtained to reduce maximum strains in the serpentine structure under stretching.

References

1.
Chow
,
J. H.
,
Sitaraman
,
S. K.
,
May
,
C.
, and
May
,
J.
,
2018
, “
Study of Wearables With Embedded Electronics Through Experiments and Simulations
,”
IEEE 68th Electronic Components and Technology Conference (ECTC)
,
San Diego, CA
, May 29–June 1, pp.
814
821
.10.1109/ECTC.2018.00126
2.
Nathan
,
A.
,
Ahnood
,
A.
,
Cole
,
M. T.
,
Lee
,
S.
,
Suzuki
,
Y.
,
Hiralal
,
P.
,
Bonaccorso
,
F.
,
Hasan
,
T.
,
Garcia-Gancedo
,
L.
, and
Dyadyusha
,
A.
,
2012
, “
Flexible Electronics: The Next Ubiquitous Platform
,”
Proc. IEEE
,
100
(
Special Centennial Issue
), pp.
1486
1517
.10.1109/JPROC.2012.2190168
3.
Park
,
S.
, and
Jayaraman
,
S.
,
2003
, “
Smart Textiles: Wearable Electronic Systems
,”
MRS Bull.
,
28
(
8
), pp.
585
591
.10.1557/mrs2003.170
4.
Alizadeh
,
A.
,
Burns
,
A.
,
Lenigk
,
R.
,
Gettings
,
R.
,
Ashe
,
J.
,
Porter
,
A.
,
McCaul
,
M.
,
Barrett
,
R.
,
Diamond
,
D.
,
White
,
P.
,
Skeath
,
P.
, and
Tomczak
,
M.
,
2018
, “
A Wearable Patch for Continuous Monitoring of Sweat Electrolytes During Exertion
,”
Lab Chip
,
18
(
17
), pp.
2632
2641
.10.1039/C8LC00510A
5.
Culver
,
D. J.
,
Colon
,
A. B.
,
Washington
,
D. R.
,
Appleton
,
M. G.
,
Strang
,
A.
,
Alizadeh
,
A.
,
Burns
,
A.
,
Poliks
,
M.
, and
Tossell
,
C. C.
,
2019
, “
Field Test of Wearable Sensors for Hydration Monitoring
,”
Systems and Information Engineering Design Symposium (SIEDS)
,
Charlottesville, VA
, Apr. 26, pp.
1
4
.10.1109/SIEDS.2019.8735637
6.
Ray
,
T. R.
,
Choi
,
J.
,
Bandodkar
,
A. J.
,
Krishnan
,
S.
,
Gutruf
,
P.
,
Tian
,
L.
,
Ghaffari
,
R.
, and
Rogers
,
J. A.
,
2019
, “
Bio-Integrated Wearable Systems: A Comprehensive Review
,”
Chem. Rev.
,
119
(
8
), pp.
5461
5533
.10.1021/acs.chemrev.8b00573
7.
Assumpcao
,
D.
,
Kumar
,
S.
,
Narasimhan
,
V.
,
Lee
,
J.
, and
Choo
,
H.
,
2018
, “
High-Performance Flexible Metal-on-Silicon Thermocouple
,”
Sci. Rep.
,
8
(
1
), p.
13725
.10.1038/s41598-018-32169-9
8.
Khan
,
Y.
,
Ostfeld
,
A. E.
,
Lochner
,
C. M.
,
Pierre
,
A.
, and
Arias
,
A. C.
,
2016
, “
Monitoring of Vital Signs With Flexible and Wearable Medical Devices
,”
Adv. Mater.
,
28
(
22
), pp.
4373
4395
.10.1002/adma.201504366
9.
McCaul
,
M.
,
Glennon
,
T.
, and
Diamond
,
D.
,
2017
, “
Challenges and Opportunities in Wearable Technology for Biochemical Analysis in Sweat
,”
Curr. Opin. Electrochem.
,
3
(
1
), pp.
46
50
.10.1016/j.coelec.2017.06.001
10.
Kim
,
D.-H.
,
Ghaffari
,
R.
,
Lu
,
N.
, and
Rogers
,
J. A.
,
2012
, “
Flexible and Stretchable Electronics for Biointegrated Devices
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
113
128
.10.1146/annurev-bioeng-071811-150018
11.
Yun
,
T. G.
,
Hwang
,
B. I.
,
Kim
,
D.
,
Hyun
,
S.
, and
Han
,
S. M.
,
2015
, “
Polypyrrole–MnO2-Coated Textile-Based Flexible-Stretchable Supercapacitor With High Electrochemical and Mechanical Reliability
,”
ACS Appl. Mater. Interfaces
,
7
(
17
), pp.
9228
9234
.10.1021/acsami.5b01745
12.
Kim
,
D.-H.
,
Song
,
J.
,
Choi
,
W. M.
,
Kim
,
H.-S.
,
Kim
,
R.-H.
,
Liu
,
Z.
,
Huang
,
Y. Y.
,
Hwang
,
K.-C.
,
Zhang
,
Y.-W.
, and
Rogers
,
J. A.
,
2008
, “
Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations
,”
Proc. Natl. Acad. Sci.
,
105
(
48
), pp.
18675
18680
.10.1073/pnas.0807476105
13.
Zhang
,
Y.
,
Wang
,
S.
,
Li
,
X.
,
Fan
,
J. A.
,
Xu
,
S.
,
Song
,
Y. M.
,
Choi
,
K.-J.
,
Yeo
,
W.-H.
,
Lee
,
W.
,
Nazaar
,
S. N.
,
Lu
,
B.
,
Yin
,
L.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2014
, “
Experimental and Theoretical Studies of Serpentine Microstructures Bonded to Prestrained Elastomers for Stretchable Electronics
,”
Adv. Funct. Mater.
,
24
(
14
), pp.
2028
2037
.10.1002/adfm.201302957
14.
Li
,
T.
,
Suo
,
Z.
,
Lacour
,
S. P.
, and
Wagner
,
S.
,
2005
, “
Compliant Thin Film Patterns of Stiff Materials as Platforms for Stretchable Electronics
,”
J. Mater. Res.
,
20
(
12
), pp.
3274
3277
.10.1557/jmr.2005.0422
15.
Sim
,
K.
,
Li
,
Y.
,
Song
,
J.
, and
Yu
,
C.
,
2019
, “
Biaxially Stretchable Ultrathin Si Enabled by Serpentine Structures on Prestrained Elastomers
,”
Adv. Mater. Technol.
,
4
(
1
), p.
1800489
.10.1002/admt.201800489
16.
Pan
,
Z.
,
Xia
,
S.
,
Gdoutou
,
A.
, and
Ravichandran
,
G.
,
2015
, “
Diffraction-Assisted Image Correlation for Three-Dimensional Surface Profiling
,”
Exp. Mech.
,
55
(
1
), pp.
155
165
.10.1007/s11340-014-9918-7
17.
Schreier
,
H.
,
Orteu
,
J.-J.
, and
Sutton
,
M. A.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
, Vol.
1
,
Springer
, Berlin.
18.
Hild
,
F.
, and
Roux
,
S.
,
2012
, “
Comparison of Local and Global Approaches to Digital Image Correlation
,”
Exp. Mech.
,
52
(
9
), pp.
1503
1519
.10.1007/s11340-012-9603-7
19.
Boresi
,
A. P.
,
Schmidt
,
R. J.
, and
Sidebottom
,
O. M.
,
1985
,
Advanced Mechanics of Materials
, Vol.
6
,
Wiley
,
New York
.
20.
Shigley
,
J. E.
,
2011
,
Shigley's Mechanical Engineering Design
,
Tata McGraw-Hill Education
, New York.
You do not currently have access to this content.