Abstract

Thermocompression bonding of copper to copper using copper nanoparticles is studied using molecular dynamics. The bonding interface formation process is investigated frst. For the bonding process, the effects of temperature and external pressure are examined. Also, we examine the grain growth at the interface. The results show that the nanoparticles with high surface energy and low compressive strength provide the active atoms to bond with copper. Pressure determining the degree of deformation of nanoparticles transfers atoms from the interior to the surface of nanoparticles and provide more surface atom to form bonds with bulk copper. While continuous pressure increase does not help bonding, higher temperature will facilitate formation of vacancies by breaking the bonds and driving the metal atoms into these vacancies. In addition, a higher temperature promotes grain growth at the interface. These behaviors indicate that using nanoparticles as a bonding layer in metal bonding can effectively reduce bonding temperature and pressure. It is necessary to select appropriate pressure at initial bonding stage and provide continuous high-temperature hold time.

References

1.
Lancaster
,
A.
, and
Keswani
,
M.
,
2018
, “
Integrated Circuit Packaging Review With An Emphasis on 3D Packaging
,”
Integration
,
60
, pp.
204
212
.10.1016/j.vlsi.2017.09.008
2.
Panigrahy
,
A. K.
, and
Chen
,
K.
,
2018
, “
Low Temperature Cu–Cu Bonding Technology in Three-Dimensional Integration: An Extensive Review
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
010801
.10.1115/1.4038392
3.
Lin
,
P. C.
,
Chen
,
H.
,
Hsieh
,
H.-C.
,
Tseng
,
T.-H.
,
Lee
,
H. Y.
, and
Wu
,
A. T.
,
2018
, “
Co-Sputtered Cu(Ti) Thin Alloy Film for Formation of Cu Diffusion and Chip-Level Bonding
,”
Mater. Chem. Phys.
,
211
, pp.
17
22
.10.1016/j.matchemphys.2018.01.043
4.
Lykova
,
M.
,
Langer
,
E.
,
Hinrichs
,
K.
,
Panchenko
,
I.
,
Meyer
,
J.
,
Künzelmann
,
U.
,
Wolf
,
M. J.
, and
Lang
,
K. D.
,
2018
, “
Characterization of Self-Assembled Monolayers for Cu-Cu Bonding Technology
,”
Microelectron. Eng.
,
202
, pp.
19
24
.10.1016/j.mee.2018.09.008
5.
Chu
,
Y. C.
, and
Chen
,
C.
,
2018
, “
Anisotropic Grain Growth to Eliminate Bonding Interfaces in Direct Copper-to-Copper Joints Using 〈111〉-Oriented Nanotwinned Copper Films
,”
Thin Solid Films
,
667
, pp.
55
58
.10.1016/j.tsf.2018.10.010
6.
Utsumi
,
J.
, and
Ichiyanagi
,
Y.
,
2014
, “
Cu-Cu Direct Bonding Achieved by Surface Method at Room Temperature
,”
AIP Conf. Proc.
,
1585
, p.
102
.10.1063/1.4866626
7.
Panigrahi
,
A. K.
,
Ghosh
,
T.
,
Vanjari
,
S. R. K.
, and
Singh
,
S. G.
,
2017
, “
Demonstration of Sub 150 °C Cu-Cu Thermocompression Bonding for 3D IC Applications, Utilizing an Ultra-Thin Layer of Manganin Alloy as an Effective Surface Passivation Layer
,”
Mater. Lett.
,
194
, pp.
86
89
.10.1016/j.matlet.2017.02.041
8.
Li
,
J.
,
Yu
,
X.
,
Shi
,
T.
,
Cheng
,
C.
,
Fan
,
J.
,
Cheng
,
S.
,
Li
,
T.
,
Liao
,
G.
, and
Tang
,
Z.
,
2017
, “
Depressing of Cu Cu Bonding Temperature by Composting Cu Nanoparticle Paste with Ag Nanoparticles
,”
J. Alloys Compd.
,
709
, pp.
700
707
.10.1016/j.jallcom.2017.03.220
9.
Wu
,
Z.
,
Cai
,
J.
,
Wang
,
Q.
, and
Wang
,
J.
,
2017
, “
Low Temperature Cu-Cu Bonding Using Copper Nanoparticles Fabricated by High Pressure PVD
,”
AIP Adv.
,
7
(
3
), p.
035306
.10.1063/1.4978490
10.
Mou
,
Y.
,
Peng
,
Y.
,
Zhang
,
Y.
,
Cheng
,
H.
, and
Chen
,
M.
,
2018
, “
Cu-Cu Bonding Enhancement at Low Temperature by Using Carboxylic Acid Surface-Modified Cu Nanoparticles
,”
Mater. Lett.
,
227
, pp.
179
183
.10.1016/j.matlet.2018.05.037
11.
Li
,
J.
,
Yu
,
X.
,
Shi
,
T.
,
Cheng
,
C.
,
Fan
,
J.
,
Cheng
,
S.
,
Liao
,
G.
, and
Tang
,
Z.
,
2017
, “
Low-Temperature and Low-Pressure Cu–Cu Bonding by Highly Sinterable Cu Nanoparticle Paste
,”
Nanoscale Res. Lett.
,
12
(
1
), p.
255
.10.1186/s11671-017-2037-5
12.
Del Carro
,
L.
,
Zinn
,
A. A.
,
Ruch
,
P.
,
Bouville
,
F.
,
Studart
,
A. R.
, and
Brunschwiler
,
T.
,
2019
, “
Oxide-Free Copper Pastes for the Attachment of Large-Area Power Devices
,”
J. Electron. Mater.
,
48
(
10
), pp.
6823
6834
.10.1007/s11664-019-07452-8
13.
Zhang
,
Y.
,
Wu
,
L.
,
Guo
,
X.
,
Jung
,
Y. G.
, and
Zhang
,
J.
,
2016
, “
Molecular Dynamics Simulation of Electrical Resistivity in Sintering Process of Nanoparticle Silver Inks
,”
Comput. Mater. Sci.
,
125
, pp.
105
109
.10.1016/j.commatsci.2016.08.047
14.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1983
, “
Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals
,”
Phys. Rev. Lett.
,
50
(
17
), pp.
1285
1288
.10.1103/PhysRevLett.50.1285
15.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
16.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–The Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.10.1088/0965-0393/18/1/015012
17.
Lu
,
Y. X.
,
Chiu
,
Y. T.
,
Chen
,
T. Y.
,
Shih
,
M. K.
, and
Jian
,
S. R.
,
2017
, “
Microscopic Mechanisms of Cu to Cu Bonding by Molecular Dynamic Simulation
,”
IEEE CPMT Symposium
, Japan, Nov. 20, pp.
141
142
.
You do not currently have access to this content.