Abstract

Experimentally characterized critical interfacial fracture energy is often written as an explicit trigonometric function of mode-mixity and is used to determine whether an interfacial crack will propagate or not under given loading conditions for an application. A different approach to assess whether an interfacial crack will propagate is to employ a failure locus consisting of the critical fracture energies corresponding to different fracture modes, represented by an implicit formulation. Such a failure locus can be linear, elliptical, among other shapes. As it is nearly impossible to obtain isolated GIc or GIIc values through experimentation, extrapolations are used to determine these two extreme values based on intermediate experimental data. However, the magnitude of these extreme values as well as the shape of the two forms of failure curves are at risk of being inconsistent should proper care not be taken. An example of such an inconsistency would be to use a trigonometric formulation to obtain the extreme values through extrapolation and then employ those values in simulation through an elliptical failure. In this work, we have employed a series of commonly used interfacial fracture energy measurement techniques over a range of mode-mixities for a metal/polymer interface to demonstrate the potential discrepancy in the two approaches and to underscore the need for a consistent approach in evaluating interfacial crack propagation.

References

1.
Sundararaman
,
V.
, and
Sitaraman
,
S. K.
,
2001
, “
Interfacial Fracture Toughness for Delamination Growth Prediction in a Novel Peripheral Away Package
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
265
270
.10.1109/6144.926392
2.
Soboyejo
,
W. O.
,
Lu
,
G. Y.
,
Chengalva
,
S.
,
Zhang
,
J.
, and
Kenner
,
V.
,
1999
, “
A Modified Mixed-Mode Bending Specimen for the Interfacial Fracture Testing of Dissimilar Materials
,”
Fatigue Fract. Eng. Mater. Struct.
,
22
(
9
), pp.
799
810
.10.1046/j.1460-2695.1999.t01-1-00203.x
3.
Harries
,
R. J.
, and
Sitaraman
,
S. K.
,
2001
, “
Numerical Modeling of Interfacial Delamination Propagation in a Novel Peripheral Array Package
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
256
264
.10.1109/6144.926391
4.
Xie
,
W. D.
, and
Sitaraman
,
S. K.
,
2003
, “
Investigation of Interfacial Delamination of a Copper-Epoxy Interface Under Monotonic and Cyclic Loading: Experimental Characterization
,”
IEEE Trans. Adv. Packag.
,
26
(
4
), pp.
447
452
.10.1109/TADVP.2003.821091
5.
Xie
,
W. D.
, and
Sitaraman
,
S. K.
,
2003
, “
Investigation of Interfacial, Delamination of a Copper-Epoxy Interface Under Monotonic and Cyclic Loading: Modeling and Evaluation
,”
IEEE Trans. Adv. Packag.
,
26
(
4
), pp.
441
446
.10.1109/TADVP.2003.821087
6.
Guzek
,
J.
,
Azimi
,
H.
, and
Suresh
,
S.
,
1997
, “
Fatigue Crack Propagation Along Polymer-Metal Interfaces in Microelectronic Packages
,”
IEEE Trans. Compon. Packag. Manuf. Technol., Part A
,
20
(
4
), pp.
496
504
.10.1109/95.650940
7.
Ostrowicki
,
G. T.
,
Fritz
,
N. T.
,
Okereke
,
R. I.
,
Kohl
,
P. A.
, and
Sitaraman
,
S. K.
,
2012
, “
Domed and Released Thin-Film Construct—An Approach for Material Characterization and Compliant Interconnects
,”
IEEE Trans. Device Mater. Reliab.
,
12
(
1
), pp.
15
23
.10.1109/TDMR.2011.2175927
8.
Ostrowicki
,
G. T.
, and
Sitaraman
,
S. K.
,
2012
, “
Magnetically Actuated Peel Test for Thin Films
,”
Thin Solid Films
,
520
(
11
), pp.
3987
3993
.10.1016/j.tsf.2012.01.042
9.
Ostrowicki
,
G. T.
,
Williamson
,
J.
,
Gupta
,
V.
, and
Gurrum
,
S. P.
,
2015
, “
Thermal Cycling Reliability of Lead Free Solder Joints on Multi-Terminal Passive Components
,”
Presented at the ECTC,
San Diego, CA, May 26–29, pp.
127
134
. 10.1109/ECTC.2015.7159581
10.
Ostrowicki
,
G. T.
, and
Sitaraman
,
S. K.
,
2016
, “
Cyclic Magnetic Actuation Technique for Thin Film Interfacial Fatigue Crack Propagation
,”
Eng. Fract. Mech.
,
168
(
Part A
), pp.
1
10
.10.1016/j.engfracmech.2016.09.007
11.
Sharratt
,
B. M.
,
Wang
,
L. C.
, and
Dauskardt
,
R. H.
,
2007
, “
Anomalous Debonding Behavior of a Polymer/Inorganic Interface
,”
Acta Mater.
,
55
(
10
), pp.
3601
3609
.10.1016/j.actamat.2007.02.012
12.
Tran
,
H. T.
,
Shirangi
,
M. H.
,
Pang
,
X.
, and
Volinsky
,
A. A.
,
2014
, “
Temperature, Moisture and Mode-Mixity Effects on Copper Leadframe/EMC Interfacial Fracture Toughness
,”
Int. J. Fract.
185
(
1–2
), pp.
115
127
.10.1007/s10704-013-9907-3
13.
Kwatra
,
A.
,
Samet
,
D.
, and
Sitaraman
,
S. K.
,
2015
, “
Effect of Thermal Aging on Cohesive Zone Models to Study Copper Leadframe/Mold Compound Interfacial Delamination
,”
65th Electronic Components and Technology Conference (ECTC)
, IEEE, San Diego, CA, May 26–29, pp.
127
134
. 10.1109/ECTC.2015.7159801
14.
Ahn
,
K.
,
Park
,
S. H.
, and
Kim
,
Y. H.
,
2017
, “
Degradation of Adhesion Between Cu and Epoxy-Based Dielectric During Exposure to Hot Humid Environments
,”
Microelectron. Reliab.
,
78
, pp.
1
10
.10.1016/j.microrel.2017.07.083
15.
Chao
,
S.-C.
,
Huang
,
W.-C.
,
Liu
,
J.-H.
,
Song
,
J.-M.
,
Shen
,
P.-Y.
,
Huang
,
C.-L.
,
Hung
,
L.-T.
, and
Chang
,
C.-H.
,
2019
, “
Oxidation Characteristics of Commercial Copper-Based Lead Frame Surface and the Bonding With Epoxy Molding Compounds
,”
Microelectron. Reliab.
,
99
, pp.
161
167
.10.1016/j.microrel.2019.05.020
16.
Pape
,
H.
,
Maus
,
I.
,
Paul
,
I.
,
Ernst
,
L. J.
, and
Wunderle
,
B.
,
2012
, “
Fracture Toughness Characterization and Modeling of Interfaces in Microelectronic Packages—A Status Review
,”
13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems,
Cascais, Portugal, Apr. 16–18, pp.
1/9
9/9
. 10.1109/ESimE.2012.6191773
17.
Liechti
,
K. M.
, and
Chai
,
Y. S.
,
1991
, “
Biaxial Loading Experiments for Determining Interfacial Fracture-Toughness
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
680
687
.10.1115/1.2897248
18.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “
Mixed Mode Cracking in Layered Materials
,”
Advances in Applied Mechanics
, Vol.
29
,
W. H.
John
and
Y. W.
Theodore
, eds.,
Elsevier
, San Diego, CA, pp.
63
191
. 10.1016/S0065-2156(08)70164-9
19.
Jung Lee
,
M.
,
Min Cho
,
T.
,
Seock Kim
,
W.
,
Chai Lee
,
B.
, and
Ju Lee
,
J.
,
2010
, “
Determination of Cohesive Parameters for a Mixed-Mode Cohesive Zone Model
,”
Int. J. Adhes. Adhes.
,
30
(
5
), pp.
322
328
.10.1016/j.ijadhadh.2009.10.005
20.
Xie
,
D.
, and
Waas
,
A. M.
,
2006
, “
Discrete Cohesive Zone Model for Mixed-Mode Fracture Using Finite Element Analysis
,”
Eng. Fract. Mech.
,
73
(
13
), pp.
1783
1796
.10.1016/j.engfracmech.2006.03.006
21.
Jain
,
S.
,
Na
,
S. R.
,
Liechti
,
K. M.
, and
Bonnecaze
,
R. T.
,
2017
, “
A Cohesive Zone Model and Scaling Analysis for Mixed-Mode Interfacial Fracture
,”
Int. J. Solids Struct.
,
129
, pp.
167
176
.10.1016/j.ijsolstr.2017.09.002
22.
Dávila
,
C.
, and
Camanho
,
P.
,
2019
,
Decohesion Elements Using Two and Three-Parameter Mixed-Mode Criteria
, America Helicopter Society Conference Williamsburg, VA, Oct. 29–Nov. 1, 2001.
23.
Allix
,
O.
, and
Corigliano
,
A.
,
1996
, “
Modeling and Simulation of Crack Propagation in Mixed-Modes Interlaminar Fracture Specimens
,”
Int. J. Fract.
,
77
(
2
), pp.
111
140
.10.1007/BF00037233
24.
Charalambides
,
P. G.
,
Lund
,
J.
,
Evans
,
A. G.
, and
McMeeking
,
R. M.
,
1989
, “
A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
77
82
.10.1115/1.3176069
25.
Charalambides
,
M.
,
Kinloch
,
A. J.
,
Wang
,
Y.
, and
Williams
,
J. G.
,
1992
, “
On the Analysis of Mixed-Mode Failure
,”
Int. J. Fract
,
54
(
3
), pp.
269
291
. 10.1007/BF00035361
26.
Roe
,
K. L.
, and
Siegmund
,
T.
,
2003
, “
An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulation
,”
Eng. Fract. Mech.
,
70
(
2
), pp.
209
232
.10.1016/S0013-7944(02)00034-6
27.
Turon
,
A.
,
Costa
,
J.
,
Camanho
,
P. P.
, and
Davila
,
C. G.
,
2007
, “
Simulation of Delamination in Composites Under High-Cycle Fatigue
,”
Composites, Part A
,
38
(
11
), pp.
2270
2282
.10.1016/j.compositesa.2006.11.009
28.
Chew
,
H. B.
,
2014
, “
Cohesive Zone Laws for Fatigue Crack Growth: Numerical Field Projection of the Micromechanical Damage Process in an Elasto-Plastic Medium
,”
Int. J. Solids Struct.
,
51
(
6
), pp.
1410
1420
.10.1016/j.ijsolstr.2013.12.033
29.
Pascoe
,
J. A.
,
Alderliesten
,
R. C.
, and
Benedictus
,
R.
,
2013
, “
Methods for the Prediction of Fatigue Delamination Growth in Composites and Adhesive Bonds—A Critical Review
,”
Eng. Fract. Mech.
,
112–113
, pp.
72
96
.10.1016/j.engfracmech.2013.10.003
30.
Samet
,
D.
,
Rambhatla
,
V. N. N. T.
,
Kwatra
,
A.
, and
Sitaraman
,
S. K.
,
2017
, “
A Fatigue Crack Propagation Model With Resistance Curve Effects for an Epoxy/Copper Interface
,”
Eng. Fract. Mech.
,
180
, pp.
60
72
.10.1016/j.engfracmech.2017.05.008
31.
Krieger
,
W. E. R.
,
Raghavan
,
S.
,
Kwatra
,
A.
, and
Sitaraman
,
S. K.
,
2014
, “
Cohesive Zone Experiments for Copper/Mold Compound Delamination
,”
Presented at ECTC,
Orlando, FL, May 27–30, pp.
127
134
. 10.1109/ECTC.2014.6897408
32.
Irwin
,
G. R.
, and
Kies
,
J. A.
,
1954
, “
Critical Energy Release Rate Analysis of Fracture Strength
,”
Weld. J., Res. Suppl.
,
19
, pp.
193
198
.
33.
De Gracia
,
J.
,
Boyano
,
A.
,
Arrese
,
A.
, and
Mujika
,
F.
,
2015
, “
A New Approach for Determining the R-Curve in DCB Tests Without Optical Measurements
,”
Eng. Fract. Mech.
,
135
, pp.
274
285
.10.1016/j.engfracmech.2015.01.016
34.
Rybicki
,
E. F.
, and
Kanninen
,
M. F.
,
1977
, “
A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral
,”
Eng. Fract. Mech.
,
9
(
4
), pp.
931
938
.10.1016/0013-7944(77)90013-3
35.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.10.1115/1.3601206
36.
Schlottig
,
G.
,
2012
, “
Reliability at the Chip Interfaces: Delaminating the Silicon Die From Molding Compound
,”
Ph.D. thesis
, Mechanics of Materials, Delft University of Technology, Delft, The Netherlands. 10.4233/uuid:926bb24d-973f-4f1b-93da-4e6cde8fbbda
37.
Krieger
,
W. E. R.
,
Raghavan
,
S.
, and
Sitaraman
,
S. K.
,
2016
, “
Experiments for Obtaining Cohesive-Zone Parameters for Copper-Mold Compound Interfacial Delamination
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
9
), pp.
1389
1398
.10.1109/TCPMT.2016.2589223
38.
Raghavan
,
S.
,
Schmadlak
,
I.
,
Leal
,
G.
, and
Sitaraman
,
S. K.
,
2016
, “
Mixed-Mode Cohesive Zone Parameters for Sub-Micron Scale Stacked Layers to Predict Microelectronic Device Reliability
,”
Eng. Fract. Mech.
,
153
, pp.
259
277
.10.1016/j.engfracmech.2015.12.013
39.
Samet
,
D.
,
Kwatra
,
A.
, and
Sitaraman
,
S. K.
,
2016
, “
Cohesive Zone Parameters for a Cyclically Loaded Copper-Epoxy Molding Compound Interface
,”
IEEE 66th Electronic Components and Technology Conference (ECTC),
Las Vegas, NV, May 31–June 3, pp.
1011
1018
. 10.1109/ECTC.2016.364
40.
Mollón
,
V.
,
Bonhomme
,
J.
,
Viña
,
J.
, and
Argüelles
,
A.
,
2010
, “
Theoretical and Experimental Analysis of Carbon Epoxy Asymmetric DCB Specimens to Characterize Mixed Mode Fracture Toughness
,”
Polym. Test.
,
29
(
6
), pp.
766
770
.10.1016/j.polymertesting.2010.04.001
41.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack-Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), p.
1397
.10.1016/0022-5096(94)90003-5
42.
Alfano
,
G.
, and
Crisfield
,
M. A.
,
2001
, “
Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues
,”
Int. J. Numer. Methods Eng.
,
50
(
7
), pp.
1701
1736
.10.1002/nme.93
43.
Xie
,
W.
, and
Sitaraman
,
S. K.
,
2000
, “
Numerical Study of Interfacial Delamination in a System-on-Package (SOP) Integrated Substrate Under Thermal Loading
,”
The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM),
Vol.
2, Las Vegas, NV, May 23–26, pp.
356
361
. 10.1109/ITHERM.2000.866214
44.
Sheng
,
L.
,
Yuhai
,
M.
, and
Wu
,
T. Y.
,
1995
, “
Bimaterial Interfacial Crack Growth as a Function of Mode-Mixity
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
,
18
(
3
), pp.
618
626
.10.1109/95.465161
You do not currently have access to this content.