Abstract

Thermal fatigue failure of microelectronic chip often initiates from the interface between solder and substrate, and the service life of the chip is largely dependent on the singular stress–strain at this interface. To provide a reasonable life evaluation method, three thermal fatigue evaluation models, including strain-based and stress–strain based, have been established in terms of the interfacial singular fields. Thermal fatigue lives of different chips under different thermal cycles are obtained by thermal fatigue tests, and the stress and strain intensity factors and singular orders at the solder/substrate interface are computed at the same conditions, to determine the material constants in the established models. The thermal fatigue lives predicted are in acceptable agreement with the experimental results. What is more, the application of these thermal fatigue models demonstrates a fact that the thermal fatigue of the microelectronic chips can be evaluated uniformly no matter what the shapes, dimensions of the chip, and the thermomechanical properties of the solders are, as long as the relevant stress–strain intensity factors and singular orders are obtained.

References

1.
Lee
,
W. W.
,
Nguyen
,
L. T.
, and
Selvaduray
,
G. S.
,
2000
, “
Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
,
40
(
2
), pp.
231
244
.10.1016/S0026-2714(99)00061-X
2.
Xu
,
A. Q.
, and
Nied
,
H. F.
,
2000
, “
Finite Element Analysis of Stress Singularities in Attached Flip Chip Packages
,”
ASME J. Electron. Packag.
,
122
(
4
), pp.
301
305
.10.1115/1.1289768
3.
Liu
,
D. S.
,
Chen
,
Y. W.
, and
Tsai
,
C. Y.
,
2018
, “
Thermal Stress Analysis of Chip Scale Packaging by Using Novel Multiscale Interface Element Method
,”
Math. Probl. Eng.
, 2018, p.
4962498
.10.1155/2018/4962498
4.
Fan
,
X. J.
,
Varia
,
B.
, and
Han
,
Q.
,
2010
, “
Design and Optimization of Thermo-Mechanical Reliability in Wafer Level Packaging
,”
Microelectron. Reliab.
,
50
(
4
), pp.
536
546
.10.1016/j.microrel.2009.11.010
5.
Otto
,
A.
,
Rzepka
,
S.
, and
Wunderle
,
B.
,
2019
, “
Investigation of Active Power Cycling Combined With Passive Thermal Cycles on Discrete Power Electronic Devices
,”
ASME J. Electron. Packag.
,
141
(
3
), p.
031012
.10.1115/1.4043646
6.
Le
,
V. N.
,
Benabou
,
L.
,
Tao
,
Q. B.
, and
Etgens
,
V.
,
2017
, “
Modeling of Intergranular Thermal Fatigue Cracking of a Lead-Free Solder Joint in a Power Electronic Module
,”
Int. J. Solids Struct.
,
106–107
, pp.
1
12
.10.1016/j.ijsolstr.2016.12.003
7.
Pierce
,
D. M.
,
Sheppard
,
S. D.
,
Vianco
,
P. T.
,
Regent
,
J. A.
, and
Grazier
,
J. M.
,
2008
, “
Fatigue Life Prediction Methodology for Lead-Free Solder Alloy Interconnects: Development and Validation
,”
ASME J. Electron. Packag.
,
130
(
1
), p.
11003
.10.1115/1.2837515
8.
Lee
,
J. H.
, and
Jeong
,
H. Y.
,
2014
, “
Fatigue Life Prediction of Solder Joints With Consideration of Frequency, Temperature and Cracking Energy Density
,”
Int. J. Fatigue
,
61
, pp.
264
270
.10.1016/j.ijfatigue.2013.10.021
9.
Tian
,
Y.
,
Ren
,
N.
,
Jian
,
X. X.
,
Geng
,
T.
, and
Wu
,
Y. P.
,
2018
, “
Interfacial Compounds Characteristic and Its Reliability Effects on SAC305 Microjoints in Flip Chip Assemblies
,”
ASME J. Electron. Packag.
,
140
(
3
), p.
031007
.10.1115/1.4040298
10.
Huang
,
X. G.
, and
Han
,
Z. Y.
,
2016
, “
Interface Singular Field Analysis and Thermal Fatigue Failure of Solder Joint in a Stacked Electronic Modules
,”
J. Mater. Sci. Mater. Electron.
,
27
(
8
), pp.
8299
8311
.10.1007/s10854-016-4838-1
11.
Fan
,
X. J.
,
Wang
,
H. B.
, and
Lim
,
T. B.
,
2001
, “
Investigation of the Underfill Delamination and Cracking in Flip-Chip Modules Under Temperature Cyclic Loading
,”
IEEE Trans. Compon. Package. Technol.
,
24
(
1
), pp.
84
91
.10.1109/6144.910806
12.
Su
,
S. N.
,
Akkara
,
J. F.
,
Thaper
,
R.
,
Alkhazali
,
A.
,
Hamasha
,
M.
, and
Hamasha
,
S.
,
2019
, “
A State-of-the-Art Review of Fatigue Life Prediction Models for Solder Joint
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
040802
.10.1115/1.4043405
13.
Frear
,
D. R.
,
Jones
,
W. B.
, and
Kinsman
,
K. R.
,
1991
,
Solder Mechanics, a State of the Art Assessment
,
TMS
, Philadelphia, PA.
14.
Hu
,
B. R.
,
Gonzalez
,
J. O.
,
Ran
,
L.
,
Ren
,
H.
,
Zeng
,
Z.
,
Lai
,
W.
,
Gao
,
B.
,
Alatise
,
O.
,
Lu
,
H.
,
Bailey
,
C.
, and
Mawby
,
P.
,
2017
, “
Failure and Reliability Analysis of a SiC Power Module Based on Stress Comparison to a Si Device
,”
IEEE Trans. Device Mater. Reliab.
,
17
(
4
), pp.
727
737
.10.1109/TDMR.2017.2766692
15.
Pang
,
J. H. L.
,
Tan
,
T.
, and
Sitaraman
,
S. K.
,
1998
, “
Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip on Board Package Subjected to Temperature Cycling Loading
,”
48th Electronic Components and Technology Conference
(
ECTC
), Seattle, WA, May 25–28, pp.
878
883
.10.1109/ECTC.1998.678811
16.
Yeo
,
C. K.
,
Mhaisalkar
,
S.
, and
Pang
,
H. L. J.
,
1996
, “
Solder Joint Reliability Study of 256 Pin, 0.4 mm Pitch, PQFP
,”
46th Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 28–31, pp.
1222
1231
.10.1109/ECTC.1996.550891
17.
Syed
,
A. R.
,
1996
, “
Thermal Fatigue Reliability Enhancement of Plastic Ball Grid Array (PBGA) Packages
,”
46th Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 28–31, pp.
1211
1216
.10.1109/ECTC.1996.550889
18.
Wu
,
K. P.
,
Wade
,
N.
,
Cui
,
J.
, and
Miyahara
,
K.
,
2003
, “
Microstructural Effect on the Creep Strength of a Sn-3.5% Ag Solder Alloy
,”
J. Electron. Mater.
,
32
(
1
), pp.
5
8
.10.1007/s11664-003-0245-5
19.
Ramachandran
,
V.
, and
Chiang
,
K. N.
,
2017
, “
Feasibility Evaluation of Creep Model for Failure Assessment of Solder Joint Reliability of Wafer-Level Packaging
,”
IEEE Trans. Device Mater. Reliab.
,
17
(
4
), pp.
672
677
.10.1109/TDMR.2017.2751085
20.
Dasgupta
,
A.
,
Oyan
,
C.
,
Barker
,
D.
, and
Pecht
,
M.
,
1992
, “
Solder Creep-Fatigue Analysis by an Energy-Partitioning Approach
,”
ASME J. Electron. Packag.
,
114
(
2
), pp.
152
160
.10.1115/1.2906412
21.
Pan
,
T.
,
1994
, “
Critical Accumulated Strain Energy (Case) Failure Criterion for Thermal Cycling Fatigue of Solder Joints
,”
ASME J. Electron. Packag.
,
116
(
3
), pp.
163
170
.10.1115/1.2905681
22.
Solomon
,
H. D.
, and
Tolksdorf
,
E. D.
,
1996
, “
Energy Approach to the Fatigue of 60/40 Solder—Part II: Influence of Hold Time and Asymmetric Loading
,”
ASME J. Electron. Packag.
,
118
(
2
), pp.
67
71
.10.1115/1.2792134
23.
Wang
,
T. C.
,
Samal
,
S. K.
,
Lim
,
S. K.
, and
Shi
,
Y.
,
2019
, “
Entropy Production-Based Full-Chip Fatigue Analysis: From Theory to Mobile Applications
,”
IEEE Trans. Comput. Aided Des.
,
38
(
1
), pp.
84
95
.10.1109/TCAD.2018.2803623
24.
Yao
,
Y.
,
Long
,
X.
, and
Keer
,
L. M.
,
2017
, “
A Review of Recent Research on the Mechanical Behavior of Lead-Free Solders
,”
ASME Appl. Mech. Rev.
,
69
(
4
), p.
040802
.10.1115/1.4037462
25.
Stolkarts
,
V.
,
Moran
,
B.
, and
Keer
,
L. M.
,
1998
, “
Constitutive and Damage Model for Solders
,”
48th Electronic Components and Technology Conference
(
ECTC
), Seattle, WA, May 25–28, pp.
379
385
.10.1109/ECTC.1998.678721
26.
Chen
,
Y.
,
Men
,
W. Y.
,
Yuan
,
Z. H.
,
Kang
,
R.
, and
Mosleh
,
A.
,
2019
, “
Nonlinear Damage Accumulation Rule for Solder Life Prediction Under Combined Temperature Profile With Varying Amplitude
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
1
), pp.
39
50
.10.1109/TCPMT.2018.2848481
27.
Erinc
,
M.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2007
, “
Integrated Numerical-Experimental Analysis of Interfacial Fatigue Fracture in SnAgCu Solder Joints
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5680
5694
.10.1016/j.ijsolstr.2007.01.021
28.
Munz
,
D.
, and
Yang
,
Y. Y.
,
1992
, “
Stress Singularities at Interface in Bonded Dissimilar Materials Under Mechanical and Thermal Loading
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
857
861
.10.1115/1.2894053
29.
Le
,
V. N.
,
Benabou
,
L.
,
Etgens
,
V.
, and
Tao
,
Q. B.
,
2016
, “
Finite Element Analysis of the Effect of Process-Induced Voids on the Fatigue Lifetime of a Lead-Free Solder Joint Under Thermal Cycling
,”
Microelectron. Reliab.
,
65
, pp.
243
254
.10.1016/j.microrel.2016.07.098
30.
Wong
,
E. H.
,
van Driel
,
W. D.
,
Dasgupta
,
A.
, and
Pecht
,
M.
,
2016
, “
Creep Fatigue Models of Solder Joints: A Critical Review
,”
Microelectron. Reliab.
,
59
, pp.
1
12
.10.1016/j.microrel.2016.01.013
31.
Gradin
,
P. A.
,
1982
, “
A Fracture Criterion for Edge-Bonded Bimaterial Bodies
,”
J. Compos. Mater.
,
16
(
6
), pp.
448
456
.10.1177/002199838201600601
32.
Reedy
,
E. D.
, and
Guess
,
T. R.
,
1993
, “
Comparison of Butt Tensile Strength Data With Interface Corner Stress Intensity Factor Prediction
,”
Int. J. Solids Struct.
,
30
(
21
), pp.
2929
2936
.10.1016/0020-7683(93)90204-K
33.
Koguchi
,
H.
, and
Suzuki
,
N.
,
2014
, “
Singular Stress Fields in Anisotropic Bonded Joints Considering Interface Stress and Interface Elasticity
,”
ASME J. Appl. Mech.
,
81
(
7
), pp.
1003
1012
.10.1115/1.4026840
34.
Koguchi
,
H.
,
1997
, “
Stress Singularity Analysis in Three-Dimensional Bonded Structure
,”
Int. J. Solids Struct.
,
34
(
4
), pp.
461
480
.10.1016/S0020-7683(96)00028-5
35.
Murakami
,
Y.
,
2004
,
Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions
,
Yokendo Ltd.
,
Tokyo, Japan
.
36.
Sheppard
,
A.
,
Kelly
,
D.
, and
Tong
,
L.
,
1998
, “
A Damage Zone Model for the Failure Analysis of Adhesively Bonded Joints
,”
Int. J. Adhes. Adhes.
,
18
(
6
), pp.
385
400
.10.1016/S0143-7496(98)00024-4
37.
Guo
,
F. M.
,
Feng
,
M. L.
,
Nie
,
D. F.
,
Xu
,
J. Q.
,
Bhuiyan
,
M. S.
, and
Mutoh
,
Y.
,
2013
, “
Fatigue Life Prediction of SUS 630 (H900) Steel Under High Cycle Loading
,”
Acta Mech. Solida Sin.
,
26
(
6
), pp.
584
591
.10.1016/S0894-9166(14)60003-3
38.
Zhu
,
Y. X.
,
Li
,
X. Y.
,
Wang
,
C.
, and
Gao
,
R. T.
,
2015
, “
A New Creep-Fatigue Life Model of Lead-Free Solder Joint
,”
Microelectron. Reliab.
,
55
(
7
), pp.
1097
1100
.10.1016/j.microrel.2015.03.019
39.
Kanchanomai
,
C.
, and
Mutoh
,
Y.
,
2004
, “
Low-Cycle Fatigue Prediction Model for Pb-Free Solder 96.5Sn-3.5Ag
,”
J. Electron. Mater.
,
33
(
4
), pp.
329
333
.10.1007/s11664-004-0139-1
40.
Wong
,
E. H.
, and
Mai
,
Y. W.
,
2014
, “
A Unified Equation for Creep Fatigue
,”
Int. J. Fatigue
,
68
, pp.
186
194
.10.1016/j.ijfatigue.2014.05.004
41.
Syed
,
A. R.
,
2004
, “
Accumulated Creep Strain and Energy Density Based Thermal Fatigue Life Prediction Models for SnAgCu Solder Joints
,”
54th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, June 4, pp.
737
746
.10.1109/ECTC.2004.1319419
42.
Wiese
,
S.
, and
Meusel
,
E.
,
2003
, “
Characterization of Lead-Free Solders in Flip Chip Joints
,”
ASME J. Electron. Packag.
,
125
(
4
), pp.
531
538
.10.1115/1.1604155
43.
Marbut
,
C. J.
,
Montazeri
,
M.
, and
Huitink
,
D. R.
,
2018
, “
Rapid Solder Interconnect Fatigue Life Test Methodology for Predicting Thermomechanical Reliability
,”
IEEE Trans. Device Mater. Reliab.
,
18
(
3
), pp.
412
421
.10.1109/TDMR.2018.2851541
44.
Thambi
,
J. L.
,
Schiessl
,
A.
,
Waltz
,
M.
,
Lang
,
K. D.
, and
Tetzlaff
,
U.
,
2017
, “
Modified Constitutive Creep Laws With Micromechanical Modeling of Pb-Free Solder Alloys
,”
ASME J. Electron. Packag.
,
139
(
3
), p.
031002
.10.1115/1.4035850
45.
Fan
,
J. J.
,
Chen
,
W.
,
Xu
,
D.
,
Hu
,
A. H.
,
Fan
,
X. J.
,
Zhang
,
G. Q.
, and
Pecht
,
M.
,
2018
, “
Fatigue Damage Assessment of LED Chip Scale Packages With Finite Element Simulation
,”
19th International Conference on Electronic Packaging Technology
(
ICEPT
), Shanghai, China, Aug. 8–11, pp.
1642
1648
.10.1109/ICEPT.2018.8480748
46.
Fan
,
X. J.
,
Pei
,
M.
, and
Bhtti
,
P. K.
,
2006
, “
Effect of Finite Element Modeling Techniques on Solder Joint Fatigue Life Prediction of Flip-Chip BGA Packages
,”
56th Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 30–June 2, pp.
972
980
.10.1109/ECTC.2006.1645772
You do not currently have access to this content.