The performances of various transverse-flow double-layer microchannel heat sink configurations were evaluated compared to those of parallel-flow heat sink configurations via conjugate heat transfer analysis. For the analysis, three-dimensional Navier–Stokes and energy equations for steady incompressible laminar flow were solved using a finite-volume solver. Water with temperature-dependent thermophysical properties was used as a coolant. The thermal resistances were evaluated for various flow configurations of both cross-channel and parallel-channel designs with identical geometric parameters and total flow rate. Changes in the microchannel flow direction lead to remarkable changes in thermal resistance and temperature uniformity. A transverse-flow configuration exhibited the best overall performance among the tested flow configurations in terms of the thermal resistance, temperature uniformity, and pressure drop.

References

1.
Carballo
,
J.-A.
,
Chan
,
W.-T. J.
,
Gargini
,
P. A.
,
Kahng
,
A. B.
, and
Nath
,
S.
,
2014
, “
ITRS 2.0: Toward a Re-Framing of the Semiconductor Technology Roadmap
,”
32nd IEEE International Conference on Computer Design
(
ICCD
), Seoul, Korea, Oct. 19–22, pp.
139
146
.
2.
Moore
,
G. E.
,
2000
, “
Cramming More Components Onto Integrated Circuits
,”
Readings in Computer Architecture
,
Morgan Kaufmann
,
San Francisco, CA
, p.
56
.
3.
Moore
,
G. E.
,
1975
, “
Progress in Digital Integrated Electronics
,”
International Electron Devices Meeting
, Washington, DC, Dec. 1–3, pp.
11
13
.
4.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
,
2007
, “
Towards a Thermal Moore's Law
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
462
474
.
5.
Sauciuc
,
L.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Szleper
,
M.
,
2003
, “
Air-Cooling Extension-Performance Limits for Processor Cooling Applications
,”
19th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
STHERM
), San Jose, CA, Mar. 11–13, pp.
74
81
.
6.
Xu
,
G.
,
Guenin
,
B.
, and
Vogel
,
M.
,
2004
, “
Extension of Air Cooling for High Power Processors
,”
Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), Las Vegas, NV, June 1–4, Vol.
1
, pp.
186
193
.
7.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.
8.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
9.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Gerner
,
F. M.
,
1999
, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
149
157
.
10.
Allen
,
J.
, and
Grunberg
,
N. D.
,
1937
, “
The Resistance to the Flow of Water Along Smooth Rectangular Passages, and the Effect of a Slight Convergence or Divergence of the Boundaries
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
23
(
154
), pp.
490
503
.
11.
Gui
,
F.
, and
Scaringe
,
R. P.
,
1995
,
Enhanced Heat Transfer in the Entrance Region of Microchannels
,
American Society of Mechanical Engineers
,
New York
.
12.
Wu
,
P.
, and
Little
,
W. A.
,
1983
, “
Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson Refrigerators
,”
Cryogenics
,
23
(
5
), pp.
273
277
.
13.
Mohiuddin Mala
,
G.
, and
Li
,
D.
,
1999
, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
142
148
.
14.
Xu
,
B.
,
Ooti
,
K. T.
,
Wong
,
N. T.
, and
Choi
,
W. K.
,
2000
, “
Experimental Investigation of Flow Friction for Liquid Flow in Microchannels
,”
Int. Commun. Heat Mass Transfer
,
27
(
8
), pp.
1165
1176
.
15.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
16.
Liu
,
D.
, and
Garimella
,
S. V.
,
2004
, “
Investigation of Liquid Flow in Microchannels
,”
J. Thermophys. Heat Transfer
,
18
(
1
), pp.
65
72
.
17.
Toh
,
K. C.
,
Chen
,
X. Y.
, and
Chai
,
J. C.
,
2002
, “
Numerical Computation of Fluid Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
26
), pp.
5133
5141
.
18.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
.
19.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
,
1992
, “
Heat Sink Optimization With Application to Microchannels
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
15
(
5
), pp.
832
842
.
20.
Ansari
,
D.
,
Husain
,
A.
, and
Kim
,
K.-Y.
,
2010
, “
Multiobjective Optimization of a Grooved Micro-Channel Heat Sink
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
4
), pp.
767
776
.
21.
Xie
,
Y.
,
Shen
,
Z.
,
Zhang
,
D.
, and
Lan
,
J.
,
2014
, “
Thermal Performance of a Water-Cooled Microchannel Heat Sink With Grooves and Obstacles
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021001
.
22.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2008
, “
Microchannel Heat Sink With Designed Roughness: Analysis and Optimization
,”
J. Thermophys. Heat Transfer
,
22
(
3
), pp.
342
351
.
23.
Bi
,
C.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2013
, “
Heat Transfer Enhancement in Mini-Channel Heat Sinks With Dimples and Cylindrical Grooves
,”
Appl. Therm. Eng.
,
55
(
1–2
), pp.
121
132
.
24.
Hung
,
T.-C.
,
Huang
,
Y.-X.
, and
Yan
,
W.-M.
,
2013
, “
Thermal Performance of Porous Microchannel Heat Sink: Effects of Enlarging Channel Outlet
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
86
92
.
25.
Lee
,
S.-M.
, and
Kim
,
K.-Y.
,
2013
, “
Comparative Study on Performance of a Zigzag Printed Circuit Heat Exchanger With Various Channel Shapes and Configurations
,”
Heat Mass Transfer
,
49
(
7
), pp.
1021
1028
.
26.
Chein
,
R.
, and
Chen
,
Y.
,
2005
, “
Performances of Thermoelectric Cooler Integrated With Microchannel Heat Sinks
,”
Int. J. Refrig.
,
28
(
6
), pp.
828
839
.
27.
Husain
,
A.
,
Kim
,
S.-M.
, and
Kim
,
K.-Y.
,
2013
, “
Performance Analysis and Design Optimization of Micro-Jet Impingement Heat Sink
,”
Heat Mass Transfer
,
49
(
11
), pp.
1613
1624
.
28.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2015
, “
Heat Transfer and Pressure Drop Characteristics of Finned Metal Foam Heat Sinks Under Uniform Impinging Flow
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021014
.
29.
Lee
,
H.
,
Agonafer
,
D. D.
,
Won
,
Y.
,
Houshmand
,
F.
,
Gorle
,
C.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2016
, “
Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010907
.
30.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2008
, “
Optimization of a Microchannel Heat Sink With Temperature Dependent Fluid Properties
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1101
1107
.
31.
Redmond
,
M.
, and
Kumar
,
S.
,
2014
, “
Optimization of Thermoelectric Coolers for Hotspot Cooling in Three-Dimensional Stacked Chips
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
011006
.
32.
Li
,
Z.
,
Huai
,
X.
,
Tao
,
Y.
, and
Chen
,
H.
,
2007
, “
Effects of Thermal Property Variations on the Liquid Flow and Heat Transfer in Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2803
2814
.
33.
Herwig
,
H.
, and
Mahulikar
,
S. P.
,
2006
, “
Variable Property Effects in Single-Phase Incompressible Flows Through Microchannels
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
977
981
.
34.
Herwig
,
H.
, and
Hausner
,
O.
,
2003
, “
Critical View on ‘New Results in Micro-Fluid Mechanics': An Example
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
935
937
.
35.
Morini
,
G. L.
,
2006
, “
Scaling Effects for Liquid Flows in Microchannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
64
73
.
36.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2287
2297
.
37.
Wei
,
X.
,
Joshi
,
Y.
, and
Patterson
,
M. K.
,
2007
, “
Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices
,”
ASME J. Heat Transfer
,
129
(
10
), p.
1432
.
38.
Cheng
,
Y. J.
,
2007
, “
Numerical Simulation of Stacked Microchannel Heat Sink With Mixing-Enhanced Passive Structure
,”
Int. Commun. Heat Mass Transfer
,
34
(
3
), pp.
295
303
.
39.
ANSYS
,
2013
, “
CFX 15.0: Solver Theory Guide
,” ANSYS Inc., Canonsburg, PA.
40.
Raw
,
M.
,
1996
, “
Robustness of Coupled Algebraic Multigrid for the Navier–Stokes Equations
,”
AIAA
Paper No. 96-0297.
41.
Hung
,
T.-C.
,
Yan
,
W.-M.
, and
Li
,
W.-P.
,
2012
, “
Analysis of Heat Transfer Characteristics of Double-Layered Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3090
3099
.
42.
Incropera
,
F. P.
,
1999
,
Liquid Cooling of Electronic Devices by Single-Phase Convection
,
Wiley
,
New York
.
43.
Ansari
,
D.
,
Husain
,
A.
, and
Kim
,
K.-Y.
,
2010
, “
Optimization and Comparative Study on Oblique- and Rectangular-Fin Microchannel Heat Sinks
,”
J. Thermophys. Heat Transfer
,
24
(
4
), pp.
849
852
.
44.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Heat Transfer in Plain and Enhanced Microchannels
,”
ASME
Paper No. ICNMM2006-96227.
You do not currently have access to this content.